268 research outputs found
On multicurve models for the term structure
In the context of multi-curve modeling we consider a two-curve setup, with
one curve for discounting (OIS swap curve) and one for generating future cash
flows (LIBOR for a give tenor). Within this context we present an approach for
the clean-valuation pricing of FRAs and CAPs (linear and nonlinear derivatives)
with one of the main goals being also that of exhibiting an "adjustment factor"
when passing from the one-curve to the two-curve setting. The model itself
corresponds to short rate modeling where the short rate and a short rate spread
are driven by affine factors; this allows for correlation between short rate
and short rate spread as well as to exploit the convenient affine structure
methodology. We briefly comment also on the calibration of the model
parameters, including the correlation factor.Comment: 16 page
Risk-neutral densities and their application in the Piterbarg Framework
Abstract: In this paper we consider two well-known interpolation schemes for the construction of the JSE Shareholder Weighted Top 40 implied volatility surface. We extend the Breeden and Litzenberger formula to the derivative pricing framework developed by Piterbarg post the 2007 financial crisis. Our results show that the statistical moments of the constructed risk-neutral densities are highly dependent on the choice of interpolation scheme. We show how the risk-neutral denity surface can be used to price options and briefly describe how the statistical moments can be used to inform trading strategies
Quasi-Two-Dimensional Dynamics of Plasmas and Fluids
In the lowest order of approximation quasi-twa-dimensional dynamics of planetary atmospheres and of plasmas in a magnetic field can be described by a common convective vortex equation, the Charney and Hasegawa-Mirna (CHM) equation. In contrast to the two-dimensional Navier-Stokes equation, the CHM equation admits "shielded vortex solutions" in a homogeneous limit and linear waves ("Rossby waves" in the planetary atmosphere and "drift waves" in plasmas) in the presence of inhomogeneity. Because of these properties, the nonlinear dynamics described by the CHM equation provide rich solutions which involve turbulent, coherent and wave behaviors. Bringing in non ideal effects such as resistivity makes the plasma equation significantly different from the atmospheric equation with such new effects as instability of the drift wave driven by the resistivity and density gradient. The model equation deviates from the CHM equation and becomes coupled with Maxwell equations. This article reviews the linear and nonlinear dynamics of the quasi-two-dimensional aspect of plasmas and planetary atmosphere starting from the introduction of the ideal model equation (CHM equation) and extending into the most recent progress in plasma turbulence.U. S. Department of Energy DE-FG05-80ET-53088Ministry of Education, Science and Culture of JapanFusion Research Cente
Strong Approximation of Empirical Copula Processes by Gaussian Processes
We provide the strong approximation of empirical copula processes by a
Gaussian process. In addition we establish a strong approximation of the
smoothed empirical copula processes and a law of iterated logarithm
Gaussian risk models with financial constraints
In this paper, we investigate Gaussian risk models which include financial elements, such as inflation and interest rates. For some general models for inflation and interest rates, we obtain an asymptotic expansion of the finite-time ruin probability for Gaussian risk models. Furthermore, we derive an approximation of the conditional ruin time by an exponential random variable as the initial capital tends to infinity
- …