40 research outputs found
Ultra-Rapid Categorization of Fourier-Spectrum Equalized Natural Images: Macaques and Humans Perform Similarly
BACKGROUND: Comparative studies of cognitive processes find similarities between humans and apes but also monkeys. Even high-level processes, like the ability to categorize classes of object from any natural scene under ultra-rapid time constraints, seem to be present in rhesus macaque monkeys (despite a smaller brain and the lack of language and a cultural background). An interesting and still open question concerns the degree to which the same images are treated with the same efficacy by humans and monkeys when a low level cue, the spatial frequency content, is controlled. METHODOLOGY/PRINCIPAL FINDINGS: We used a set of natural images equalized in Fourier spectrum and asked whether it is still possible to categorize them as containing an animal and at what speed. One rhesus macaque monkey performed a forced-choice saccadic task with a good accuracy (67.5% and 76% for new and familiar images respectively) although performance was lower than with non-equalized images. Importantly, the minimum reaction time was still very fast (100 ms). We compared the performances of human subjects with the same setup and the same set of (new) images. Overall mean performance of humans was also lower than with original images (64% correct) but the minimum reaction time was still short (140 ms). CONCLUSION: Performances on individual images (% correct but not reaction times) for both humans and the monkey were significantly correlated suggesting that both species use similar features to perform the task. A similar advantage for full-face images was seen for both species. The results also suggest that local low spatial frequency information could be important, a finding that fits the theory that fast categorization relies on a rapid feedforward magnocellular signal
Recommended from our members
Restricting Microbial Exposure in Early Life Negates the Immune Benefits Associated with Gut Colonization in Environments of High Microbial Diversity
Background: Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity.
Methodology/Principal Findings: Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the
immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological
development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared
animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires
maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolatorreared
animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were
increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in
pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent
later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals.
This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in
indoor-reared animals.
Conclusions/Significance: Environmental factors, in particular microbial exposure, influence expression of a large number
of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require
sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively
impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune
homeostasis
Recommended from our members
Establishment of Normal Gut Microbiota Is Compromised under Excessive Hygiene Conditions
Background: Early gut colonization events are purported to have a major impact on the incidence of infectious,
inflammatory and autoimmune diseases in later life. Hence, factors which influence this process may have important
implications for both human and animal health. Previously, we demonstrated strong influences of early-life environment on
gut microbiota composition in adult pigs. Here, we sought to further investigate the impact of limiting microbial exposure
during early life on the development of the pig gut microbiota.
Methodology/Principal Findings: Outdoor- and indoor-reared animals, exposed to the microbiota in their natural rearing
environment for the first two days of life, were transferred to an isolator facility and adult gut microbial diversity was
analyzed by 16S rRNA gene sequencing. From a total of 2,196 high-quality 16S rRNA gene sequences, 440 phylotypes were
identified in the outdoor group and 431 phylotypes in the indoor group. The majority of clones were assigned to the four
phyla Firmicutes (67.5% of all sequences), Proteobacteria (17.7%), Bacteroidetes (13.5%) and to a lesser extent,
Actinobacteria (0.1%). Although the initial maternal and environmental microbial inoculum of isolator-reared animals was
identical to that of their naturally-reared littermates, the microbial succession and stabilization events reported previously in
naturally-reared outdoor animals did not occur. In contrast, the gut microbiota of isolator-reared animals remained highly
diverse containing a large number of distinct phylotypes.
Conclusions/Significance: The results documented here indicate that establishment and development of the normal gut
microbiota requires continuous microbial exposure during the early stages of life and this process is compromised under
conditions of excessive hygiene
Perceptual Load-Dependent Neural Correlates of Distractor Interference Inhibition
The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory.We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load.Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load
Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice
The increasing incidence of inflammatory bowel diseases (IBDs) in developing countries has highlighted the critical role of environmental pollutants as causative factors in their pathophysiology. Despite its ubiquity and immune toxicity, the impact of aluminum in the gut is not known. This study aimed to evaluate the effects of environmentally relevant intoxication with aluminum in murine models of colitis and to explore the underlying mechanisms. Oral administration of aluminum worsened intestinal inflammation in mice with 2,4,6-trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis and chronic colitis in interleukin 10-negative (IL10(-/-)) mice. Aluminum increased the intensity and duration of macroscopic and histologic inflammation, colonic myeloperoxidase activity, inflammatory cytokines expression, and decreased the epithelial cell renewal compared with control animals. Under basal conditions, aluminum impaired intestinal barrier function. In vitro, aluminum induced granuloma formation and synergized with lipopolysaccharide to stimulate inflammatory cytokines expression by epithelial cells. Deleterious effects of aluminum on intestinal inflammation and mucosal repair strongly suggest that aluminum might be an environmental IBD risk factor.Mucosal Immunology advance online publication, 16 October 2013; doi:10.1038/mi.2013.78
Skeletal findings in the first 12 months following initiation of glucocorticoid therapy for pediatric nephrotic syndrome
Abstract Summary Incident vertebral fractures and lumbar spine bone mineral density (BMD) were assessed in the 12 months following glucocorticoid initiation in 65 children with nephrotic syndrome. The incidence of vertebral fractures was low at 12 months (6 %) and most patients demonstrated recovery in BMD Z-scores by this time point. Introduction Vertebral fracture (VF) incidence following glucocorticoid (GC) initiation has not been previously reported in pediatric nephrotic syndrome. Methods VF was assessed on radiographs (Genant method); lumbar spine bone mineral density (LS BMD) was evaluated by dual-energy X-ray absorptiometry. Results Sixty-five children were followed to 12 months post-GC initiation (median age, 5.4 years; range, 2.3-17.9). Three of 54 children with radiographs (6 %; 95 % confidence interval (CI), 2-15 %) had incident VF at 1 year. The mean LS BMD Z-score was below the healthy average at baseline (mean ± standard deviation (SD), −0.5±1.1; p=0.001) and at 3 months (−0.6±1.1; p<0.001), but not at 6 months -013-2466-7 (−0.3±1.3; p=0.066) or 12 months (−0.3±1.2; p=0.066). Mixed effect modeling showed a significant increase in LS BMD Z-scores between 3 and 12 months (0.22 SD; 95 % CI, 0.08 to 0.36; p=0.003). A subgroup (N=16; 25 %) had LS BMD Z-scores that were ≤−1.0 at 12 months. In these children, each additional 1,000 mg/m 2 of GC received in the first 3 months was associated with a decrease in LS BMD Z-score by 0.39 at 12 months (95 % CI, −0.71 to −0.07; p=0.017). Conclusions The incidence of VF at 1 year was low and LS BMD Z-scores improved by 12 months in the majority. Twenty-five percent of children had LS BMD Z-scores ≤−1.0 at 12 months. In these children, LS BMD Z-scores were inversely associated with early GC exposure, despite similar GC exposure compared to the rest of the cohort. Osteoporos Int (2014) 25:627-637 DOI 10.1007/s0019