8 research outputs found

    Boron Doped Nanocrystalline Diamond Films for Biosensing Applications

    Get PDF
    With the rise of antibiotic resistance of pathogenic bacteria there is an increased demand for monitoring the functionality of bacteria membranes, the disruption of which can be induced by peptide-lipid interactions. In this work we attempt to construct and disrupt supported lipid membranes (SLB) on boron doped nanocrystalline diamond (B-NCD). Electrochemical Impedance Spectroscopy (EIS) was used to study in situ changes related to lipid membrane formation and disruption by peptide-induced interactions. The observed impedance changes were minimal for oxidized B-NCD samples, but were still detectable in the low frequency part of the spectra. The sensitivity for the detection of membrane formation and disruption was significantly higher for hydrogenated B-NCD surfaces. Data modeling indicates large changes in the electrical charge when an electrical double layer is formed at the B-NCD/SLB interface, governed by ion absorption. By contrast, for oxidized B-NCD surfaces, these changes are negligible indicating little or no change in the surface band bending profile

    Boron Doped Nanocrystalline Diamond Films for Biosensing Applications

    No full text
    With the rise of antibiotic resistance of pathogenic bacteria there is an increased demand for monitoring the functionality of bacteria membranes, the disruption of which can be induced by peptide-lipid interactions. In this work we attempt to construct and disrupt supported lipid membranes (SLB) on boron doped nanocrystalline diamond (B-NCD). Electrochemical Impedance Spectroscopy (EIS) was used to study in situ changes related to lipid membrane formation and disruption by peptide-induced interactions. The observed impedance changes were minimal for oxidized B-NCD samples, but were still detectable in the low frequency part of the spectra. The sensitivity for the detection of membrane formation and disruption was significantly higher for hydrogenated B-NCD surfaces. Data modeling indicates large changes in the electrical charge when an electrical double layer is formed at the B-NCD/SLB interface, governed by ion absorption. By contrast, for oxidized B-NCD surfaces, these changes are negligible indicating little or no change in the surface band bending profile

    Fluorescent Nanodiamonds: Effect of Surface Termination

    No full text
    ABSTRACT It has been reported that physico-chemical properties of diamond surfaces are closely related to the surface chemisorbed species on the surface. Hydrogen chemisorption on a chemical vapor deposition grown diamond surface is well-known to be important for stabilizing diamond surface structures with sp 3 hybridization. It has been suggested that an H-chemisorbed structure is necessary to provide a negative electron affinity condition on the diamond surfaces. Negative electron affinity condition could change to a positive electron affinity by oxidation of the Hchemisorbed diamond surfaces. Oxidized diamond surfaces usually show characteristics completely different from those of the H-chemisorbed diamond surfaces. The unique electron affinity condition, or the surface potential, is strongly related to the chemisorbed species on diamond surfaces. The relationship between the surface chemisorption structure and the surface electrical properties, such as the surface potential of the diamond, has been modelled using DFT based calculations

    Heyrovský Institute of Physical Chemistry

    No full text
    ABSTRACT It has been reported that physico-chemical properties of diamond surfaces are closely related to the surface chemisorbed species on the surface. Hydrogen chemisorption on a chemical vapor deposition grown diamond surface is well-known to be important for stabilizing diamond surface structures with sp 3 hybridization. It has been suggested that an H-chemisorbed structure is necessary to provide a negative electron affinity condition on the diamond surfaces. Negative electron affinity condition could change to a positive electron affinity by oxidation of the Hchemisorbed diamond surfaces. Oxidized diamond surfaces usually show characteristics completely different from those of the H-chemisorbed diamond surfaces. The unique electron affinity condition, or the surface potential, is strongly related to the chemisorbed species on diamond surfaces. The relationship between the surface chemisorption structure and the surface electrical properties, such as the surface potential of the diamond, has been modelled using DFT based calculations

    Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects

    No full text
    The resistivity of boron doped polycrystalline diamond films changes with boron content in a very complex way with many unclear factors. From the large number of parameters affecting boron doped polycrystalline diamond film’s conductivity we focused on the role of boron atoms inside diamond grains in terms of boron contribution to the continuum of diamond electronic states. Using a combination of theoretical and experimental techniques (plane-wave Density Functional Theory, Neutron Depth Profiling, resistivity and Hall effect measurements, Atomic Force Microscopy and Raman spectroscopy) we studied a wide range of B defect parameters – the boron concentration, location, structure, free hole concentration and mobility. The main goal and novelty of our work was to find the influence of B defects (structure, interactions, charge localisation and spins) in highly B-doped diamonds – close or above the metal-insulator transition – on the complex material charge transport mechanisms
    corecore