16 research outputs found

    Zinc Sensing Receptor Signaling, Mediated by GPR39, Reduces Butyrate-Induced Cell Death in HT29 Colonocytes via Upregulation of Clusterin

    Get PDF
    Zinc enhances epithelial proliferation, protects the digestive epithelial layer and has profound antiulcerative and antidiarrheal roles in the colon. Despite the clinical significance of this ion, the mechanisms linking zinc to these cellular processes are poorly understood. We have previously identified an extracellular Zn2+ sensing G-protein coupled receptor (ZnR) that activates Ca2+ signaling in colonocytes, but its molecular identity as well as its effects on colonocytes' survival remained elusive. Here, we show that Zn2+, by activation of the ZnR, protects HT29 colonocytes from butyrate induced cell death. Silencing of the G-protein coupled receptor GPR39 expression abolished ZnR-dependent Ca2+ release and Zn2+-dependent survival of butyrate-treated colonocytes. Importantly, GPR39 also mediated ZnR-dependent upregulation of Na+/H+ exchange activity as this activity was found in native colon tissue but not in tissue obtained from GPR39 knock-out mice. Although ZnR-dependent upregulation of Na+/H+ exchange reduced the cellular acid load induced by butyrate, it did not rescue HT29 cells from butyrate induced cell death. ZnR/GPR39 activation however, increased the expression of the anti-apoptotic protein clusterin in butyrate-treated cells. Furthermore, silencing of clusterin abolished the Zn2+-dependent survival of HT29 cells. Altogether, our results demonstrate that extracellular Zn2+, acting through ZnR, regulates intracellular pH and clusterin expression thereby enhancing survival of HT29 colonocytes. Moreover, we identify GPR39 as the molecular moiety of ZnR in HT29 and native colonocytes

    Sodium-coupled Monocarboxylate Transporters in Normal Tissues and in Cancer

    Get PDF
    SLC5A8 and SLC5A12 are sodium-coupled monocarboxylate transporters (SMCTs), the former being a high-affinity type and the latter a low-affinity type. Both transport a variety of monocarboxylates in a Na+-coupled manner. They are expressed in the gastrointestinal tract, kidney, thyroid, brain, and retina. SLC5A8 is localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to neurons and the retinal pigment epithelium. The physiologic functions of SLC5A8 include absorption of short-chain fatty acids in the colon and small intestine, reabsorption of lactate and pyruvate in the kidney, and cellular uptake of lactate and ketone bodies in neurons. It also transports the B-complex vitamin nicotinate. SLC5A12 is also localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to astrocytes and Müller cells. SLC5A8 also functions as a tumor suppressor; its expression is silenced in tumors of colon, thyroid, stomach, kidney, and brain. The tumor-suppressive function is related to its ability to mediate concentrative uptake of butyrate, propionate, and pyruvate, all of which are inhibitors of histone deacetylases. SLC5A8 can also transport a variety of pharmacologically relevant monocarboxylates, including salicylates, benzoate, and γ-hydroxybutyrate. Non-steroidal anti-inflammatory drugs such as ibuprofen, ketoprofen, and fenoprofen, also interact with SLC5A8. These drugs are not transportable substrates for SLC5A8, but instead function as blockers of the transporter. Relatively less is known on the role of SLC5A12 in drug transport

    Na(+)/monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer: Molecular characterization of SMCT

    No full text
    We report an extensive characterization of the Na(+)/monocarboxylate transporter (SMCT), a plasma membrane protein that mediates active transport of monocarboxylates such as propionate and nicotinate, and we show that SMCT may play a role in colorectal cancer diagnosis. SMCT, the product of the SLC5A8 gene, is 70% similar to the Na(+)/I(−) symporter, the protein that mediates active I(−) uptake in the basolateral surface of thyrocytes and other cells. SMCT was reported in the apical surface of thyrocytes and formerly proposed also to transport I(−) and was called the apical I(−) transporter. However, it is now clear that SMCT does not transport I(−). Here we demonstrate a high-affinity Na(+)-dependent monocarboxylate transport system in thyroid cells, which is likely to be SMCT. We show that, whereas thyroidal Na(+)/I(−) symporter expression is thyroid-stimulating hormone (TSH)-dependent and basolateral, SMCT expression is TSH-independent and apical not only in the thyroid but also in kidney and colon epithelial cells and in polarized Madin–Darby canine kidney cells. We determine the kinetic parameters of SMCT activity and show its inhibition by ibuprofen (K(i) = 73 ± 9 μM) in Xenopus laevis oocytes. SMCT was proposed to be a tumor suppressor in colon cancer [Li, H., et al. (2003) Proc. Natl. Acad. Sci. USA 100, 8412–8417]. Significantly, we show that higher expression of SMCT in colon samples from 113 colorectal cancer patients correlates with longer disease-free survival, suggesting that SMCT expression may be a favorable indicator of colorectal cancer prognosis
    corecore