584 research outputs found

    Silencing of caveolin-1 in fibroblasts as opposed to epithelial tumor cells results in increased tumor growth rate and chemoresistance in a human pancreatic cancer model

    Get PDF
    Caveolin‑1 (Cav‑1) expression has been shown to be associated with tumor growth and resistance to chemotherapy in pancreatic cancer. The primary aim of this study was to explore the significance of Cav‑1 expression in pancreatic cancer cells as compared to fibroblasts in relation to cancer cell proliferation and chemoresistance, both in vitro and in vivo, in an immunodeficient mouse model. We also aimed to evaluate the immunohistochemical expression of Cav‑1 in the epithelial and stromal component of pancreatic cancer tissue specimens. The immunohistochemical staining of poorly differentiated tissue sections revealed a strong and weak Cav‑1 expression in the epithelial tumor cells and stromal fibroblasts, respectively. Conversely, the well‑differentiated areas were characterized by a weak epithelial Cav‑1 expression. Cav‑1 downregulation in cancer cells resulted in an increased proliferation in vitro; however, it had no effect on chemoresistance and growth gain in vivo. By contrast, the decreased expression of Cav‑1 in fibroblasts resulted in a growth advantage and the chemoresistance of cancer cells when they were co‑injected into immunodeficient mice to develop mixed fibroblast/cancer cell xenografts. On the whole, the findings of this study suggest that the downregulation of Cav‑1 in fibroblasts is associated with an increased tumor proliferation rate in vivo and chemoresistance. Further studies are warranted to explore whether the targeting of Cav‑1 in the stroma may represent a novel therapeutic approach in pancreatic cancer

    Measurement of Inverse Pion Photoproduction at Energies Spanning the N(1440) Resonance

    Full text link
    Differential cross sections for the process pi^- p -> gamma n have been measured at Brookhaven National Laboratory's Alternating Gradient Synchrotron with the Crystal Ball multiphoton spectrometer. Measurements were made at 18 pion momenta from 238 to 748 MeV/c, corresponding to E_gamma for the inverse reaction from 285 to 769 MeV. The data have been used to evaluate the gamma n multipoles in the vicinity of the N(1440) resonance. We compare our data and multipoles to previous determinations. A new three-parameter SAID fit yields 36 +/- 7 (GeV)^-1/2 X 10^-3 for the A^n_1/2 amplitude of the P_11.Comment: 14 pages, 8 figures, submitted to PR

    Polarization transfer in the d(epol,e' ppol)n reaction up to Q^2=1.61 (GeV/c)^2

    Full text link
    The recoil proton polarization was measured in the d(epol,e' ppol)n reaction in Hall A of the Thomas Jefferson National Accelerator Facility (JLab). The electron kinematics were centered on the quasielastic peak (x_{Bj}~1) and included three values of the squared four-momentum transfer, Q^2=0.43, 1.00 and 1.61 (GeV/c)^2. For Q^2=0.43 and 1.61 (GeV/c)^2, the missing momentum, p_m, was centered at zero while for Q^2=1.00 (GeV/c)^2 two values of p_m were chosen: 0 and 174 MeV/c. At low p_m, the Q^2 dependence of the longitudinal polarization, P_z', is not well described by a state-of-the-art calculation. Further, at higher p_m, a 3.5 sigma discrepancy was observed in the transverse polarization, P_x'. Understanding the origin of these discrepancies is important in order to confidently extract the neutron electric form factor from the analogous d(epol,e' npol)p experiment.Comment: 6 pages, 4 figures; updated text, figures and table

    Positive pion absorption on 3He using modern trinucleon wave functions

    Get PDF
    We study pion absorption on 3He employing trinucleon wave functions calculated from modern realistic NN interactions (Paris, CD Bonn). Even though the use of the new wave functions leads to a significant improvement over older calculations with regard to both cross section and polarization data, there are hints that polarization data with quasifree kinematics cannot be described by just two-nucleon absorption mechanisms.Comment: 14 pages, 6 figure

    First Results from The GlueX Experiment

    Get PDF
    The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector systems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of π0\pi^{0}, η\eta and ω\omega mesons. Linearly-polarized photons were successfully produced through coherent bremsstrahlung and polarization transfer to the ρ\rho has been observed.Comment: 8 pages, 6 figures, Invited contribution to the Hadron 2015 Conference, Newport News VA, September 201

    Novel interactions of Selenium Binding Protein family with the PICOT containing proteins AtGRXS14 and AtGRXS16 in Arabidopsis thaliana

    Get PDF
    During abiotic stress the primary symptom of phytotoxicity can be ROS production which is strictly regulated by ROS scavenging pathways involving enzymatic and non-enzymatic antioxidants. Furthermore, ROS are well described secondary messengers of cellular processes, while during the course of evolution, plants have accomplished high degree of control over ROS and used them as signalling molecules. Glutaredoxins (GRXs) are small and ubiquitous glutathione (GSH) -or thioredoxin reductase (TR)-dependent oxidoreductases belonging to the thioredoxin (TRX) superfamily which are conserved in most eukaryotes and prokaryotes. In Arabidopsis thaliana GRXs are subdivided into four classes playing a central role in oxidative stress responses and physiological functions. In this work, we describe a novel interaction of AtGRXS14 with the Selenium Binding Protein 1 (AtSBP1), a protein proposed to be integrated in a regulatory network that senses alterations in cellular redox state and acts towards its restoration. We further show that SBP protein family interacts with AtGRXS16 that also contains a PICOT domain, like AtGRXS14.Microbial Biotechnolog

    Measurement of GEp/GMp in ep -> ep to Q2 = 5.6 GeV2

    Full text link
    The ratio of the electric and magnetic form factors of the proton, GEp/GMp, was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the recoil polarization technique. The ratio of the form factors is directly proportional to the ratio of the transverse to longitudinal components of the polarization of the recoil proton in the elastic e⃗p→ep⃗\vec ep \to e\vec p reaction. The new data presented in this article span the range 3.5 < Q2 < 5.6 GeV2 and are well described by a linear Q2 fit. Also, the ratio QF2p/F1p reaches a constant value above Q2=2 GeV2.Comment: 6 pages, 4 figures Added two names to the main author lis
    • 

    corecore