32,296 research outputs found

    Drastic improvement of surface structure and current-carrying ability in YBa2Cu3O7 films by introducing multilayered structure

    Full text link
    Much smoother surfaces and significantly improved superconducting properties of relatively thick YBa2Cu3O7 (YBCO) films have been achieved by introducing a multilayered structure with alternating main YBCO and additional NdBCO layers. The surface of thick (1 microm) multilayers has almost no holes compared to YBCO films. Critical current density (Jc) have been drastically increased up to a factor > 3 in 1 microm multilayered structures compared to YBCO films over entire temperature and applied magnetic filed range. Moreover, Jc values measured in thick multilayers are even larger than in much thinner YBCO films. The Jc and surface improvement have been analysed and attributed to growth conditions and corresponding structural peculiarities.Comment: Accepted to Appl. Phys. Lett. 88, June (2006), in press 4 pages, 3 figure

    The Labusch Parameter of a Driven Flux Line Lattice in YBa2_2Cu3_3O7_7 Superconducting Films

    Full text link
    We have investigated the influence of a driving force on the elastic coupling (Labusch parameter) of the field-cooled state of the flux line lattice (FLL) in 400 nm thick YBa2_2Cu3_3O7_7 superconducting films. We found that the FLL of a field-cooled state without driving forces is not in an equilibrium state. Results obtained for magnetic fields applied at 0∘0^\circ and 30∘^\circ relative to CuO2_2 planes, show an enhancement of the elastic coupling of the films at driving current densities several orders of magnitude smaller than the critical one. Our results indicate that the FLL appears to be in a relatively ordered, metastable state after field cooling without driving forces.Comment: 4 Figure

    Growth Pattern of Silicon Clusters

    Full text link
    Tight-binding molecular dynamics simulated annealing technique is employed to search for the ground state geometries of silicon clusters containing 11-17 atoms. These studies revealed that layer formation is the dominant growth pattern in all these clusters. Fullerene-like precursor structures consisting of fused pentagon rings are also observed. The atoms in all these clusters exhibit pronounced preference for residing on the surface.Comment: Modern Physics Letters B in press, 9 pages + 2 figures. PostScript version available at ftp://ramanujan.chem.nyu.edu/pub/mplb1.p

    Overcritical state in superconducting round wires sheathed by iron

    Get PDF
    Magnetic measurements carried out on MgB_2 superconducting round wires have shown that the critical current density J_c(B_a) in wires sheathed by iron can be significantly higher than that in the same bare (unsheathed) wires over a wide applied magnetic field B_a range. The magnetic behavior is, however, strongly dependent on the magnetic history of the sheathed wires, as well as on the wire orientation with respect to the direction of the applied field. The behavior observed can be explained by magnetic interaction between the soft magnetic sheath and superconducting core, which can result in a redistribution of supercurrents in the flux filled superconductor. A phenomenological model explaining the observed behavior is proposed.Comment: 9 pages, 7 figure

    Exact asymptotic behavior of magnetic stripe domain arrays

    Get PDF
    The classical problem of magnetic stripe domain behavior in films and plates with uniaxial magnetic anisotropy is treated. Exact analytical results are derived for the stripe domain widths as function of applied perpendicular field, HH, in the regime where the domain period becomes large. The stripe period diverges as (Hcβˆ’H)βˆ’1/2(H_c-H)^{-1/2}, where HcH_c is the critical (infinite period) field, an exact result confirming a previous conjecture. The magnetization approaches saturation as (Hcβˆ’H)1/2(H_c-H)^{1/2}, a behavior which compares excellently with experimental data obtained for a 4ΞΌ4 \mum thick ferrite garnet film. The exact analytical solution provides a new basis for precise characterization of uniaxial magnetic films and plates, illustrated by a simple way to measure the domain wall energy. The mathematical approach is applicable for similar analysis of a wide class of systems with competing interactions where a stripe domain phase is formed.Comment: 4 pages, 4 figure
    • …
    corecore