961 research outputs found
Alien Registration- Paget, Eunice V. (Mars Hill, Aroostook County)
https://digitalmaine.com/alien_docs/34052/thumbnail.jp
Traduction et validation française du Questionnaire de Répression de Weinberger
International audienceL'objectif de ce travail a été de réaliser une étude préliminaire de validation de la version française d'un questionnaire de répression émotionnelle (WAI, Weinberger Adjustment Inventory, 1989). Ses relations ont été explorées avec des évaluations de l'anxiété, de la dépression et de l'alexithymie
GaAs(111)A and B in hydrazine sulfide solutions : extreme polarity dependence of surface adsorption processes
Chemical bonds formed by hydrazine-sulfide treatment of GaAs(111) were
studied by synchrotron photoemission spectroscopy. At the B surface, the top
arsenic atoms are replaced by nitrogen atoms, while GaAs(111)A is covered by
sulfur, also bonded to underlying gallium, despite the sulfide molar
concentration being 103 times smaller than that of the hydrazine. This extreme
dependence on surface polarity is explained by competitive adsorption processes
of HS- and OH- anions and of hydrazine molecules, on Ga- adsorption sites,
which have distinct configurations on the A and B surfaces
Absence of an intrinsic value for the surface recombination velocity in doped semiconductors
A self-consistent expression for the surface recombination velocity and
the surface Fermi level unpinning energy as a function of light excitation
power () is presented for n- and p-type semiconductors doped above the
10 cm range. Measurements of on p-type GaAs films using a
novel polarized microluminescence technique are used to illustrate two limiting
cases of the model. For a naturally oxidized surface is described by a
power law in whereas for a passivated surface varies
logarithmically with . Furthermore, the variation in with surface state
density and bulk doping level is found to be the result of Fermi level
unpinning rather than a change in the intrinsic surface recombination velocity.
It is concluded that depends on throughout the experimentally
accessible range of excitation powers and therefore that no instrinsic value
can be determined. Previously reported values of on a range of
semiconducting materials are thus only valid for a specific excitation power.Comment: 10 pages, 7 figure
Genomics knowledge and attitudes among European public health professionals. Results of a cross-sectional survey
Background The international public health (PH) community is debating the opportunity to incorporate genomic technologies into PH practice. A survey was conducted to assess attitudes of the European Public Health Association (EUPHA) members towards their role in the implementation of public health genomics (PHG), and their knowledge and attitudes towards genetic testing and the delivery of genetic services. Methods EUPHA members were invited via monthly newsletter and e-mail to take part in an online survey from February 2017 to January 2018. A descriptive analysis of knowledge and attitudes was conducted, along with a univariate and multivariate analysis of their determinants. Results Five hundred and two people completed the questionnaire, 17.9% were involved in PHG activities. Only 28.9% correctly identified all medical conditions for which there is (or not) evidence for implementing genetic testing; over 60% thought that investing in genomics may divert economic resources from social and environmental determinants of health. The majority agreed that PH professionals may play different roles in incorporating genomics into their activities. Better knowledge was associated with positive attitudes towards the use of genetic testing and the delivery of genetic services in PH (OR = 1.48; 95% CI 1.01–2.18). Conclusions Our study revealed quite positive attitudes, but also a need to increase awareness on genomics among European PH professionals. Those directly involved in PHG activities tend to have a more positive attitude and better knowledge; however, gaps are also evident in this group, suggesting the need to harmonize practice and encourage greater exchange of knowledge among professionals
Fine structure and optical pumping of spins in individual semiconductor quantum dots
We review spin properties of semiconductor quantum dots and their effect on
optical spectra. Photoluminescence and other types of spectroscopy are used to
probe neutral and charged excitons in individual quantum dots with high
spectral and spatial resolution. Spectral fine structure and polarization
reveal how quantum dot spins interact with each other and with their
environment. By taking advantage of the selectivity of optical selection rules
and spin relaxation, optical spin pumping of the ground state electron and
nuclear spins is achieved. Through such mechanisms, light can be used to
process spins for use as a carrier of information
Spin-dependent electron dynamics and recombination in GaAs(1-x)N(x) alloys at room temperature
We report on both experimental and theoretical study of conduction-electron
spin polarization dynamics achieved by pulsed optical pumping at room
temperature in GaAs(1-x)N(x) alloys with a small nitrogen content (x = 2.1,
2.7, 3.4%). It is found that the photoluminescence circular polarization
determined by the mean spin of free electrons reaches 40-45% and this giant
value persists within 2 ns. Simultaneously, the total free-electron spin decays
rapidly with the characteristic time ~150 ps. The results are explained by
spin-dependent capture of free conduction electrons on deep paramagnetic
centers resulting in dynamical polarization of bound electrons. We have
developed a nonlinear theory of spin dynamics in the coupled system of
spin-polarized free and localized carriers which describes the experimental
dependencies, in particular, electron spin quantum beats observed in a
transverse magnetic field.Comment: 5 pages, 4 figures, Submitted to JETP Letter
Coulomb "blockade" of Nuclear Spin Relaxation in Quantum Dots
We study the mechanism of nuclear spin relaxation in quantum dots due to the
electron exchange with 2D gas. We show that the nuclear spin relaxation rate is
dramatically affected by the Coulomb blockade and can be controlled by gate
voltage. In the case of strong spin-orbit coupling the relaxation rate is
maximal in the Coulomb blockade valleys whereas for the weak spin-orbit
coupling the maximum of the nuclear spin relaxation rate is near the Coulomb
blockade peaks.Comment: 4 pages, 3 figure
Cs-induced charge transfer on (2x4)-GaAs(001) studied by photoemission
Cesium adsorption on 2x4 GaAs (001) was studied by photoemission and low
energy electron diffraction. The different Cs induced changes of the As 3d and
Ga 3d core level spectra show that charge transfer is almost complete for Ga
surface sites, but is negligible to surface As at a coverage smaller than 0.3
ML. The situation is opposite for a coverage larger than 0.3ML, at which
transfer occurs to As but no longer to Ga. Charge transfer to As atoms leads to
disordering and destabilization and induces surface conversion from the As-rich
surface to the Ga-rich 4x2 one after annealing at a reduced temperature of 450
C
Hyperfine-mediated transitions between a Zeeman split doublet in GaAs quantum dots: The role of the internal field
We consider the hyperfine-mediated transition rate between Zeeman split spin
states of the lowest orbital level in a GaAs quantum dot. We separate the
hyperfine Hamiltonian into a part which is diagonal in the orbital states and
another one which mixes different orbitals. The diagonal part gives rise to an
effective (internal) magnetic field which, in addition to an external magnetic
field, determines the Zeeman splitting. Spin-flip transitions in the dots are
induced by the orbital mixing part accompanied by an emission of a phonon. We
evaluate the rate for different regimes of applied magnetic field and
temperature. The rates we find are bigger that the spin-orbit related rates
provided the external magnetic field is sufficiently low.Comment: 8 pages, 3 figure
- …