34 research outputs found
In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae
The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes
Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions
AbstractIt has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit
The peatland map of Europe
Based on the ‘European Mires Book’ of the International Mire Conservation Group (IMCG), this article provides a composite map of national datasets as the first comprehensive peatland map for the whole of Europe. We also present estimates of the extent of peatlands and mires in each European country individually and for the entire continent. A minimum peat thickness criterion has not been strictly applied, to allow for (often historically determined) country-specific definitions. Our ‘peatland’ concept includes all ‘mires’, which are peatlands where peat is being formed. The map was constructed by merging national datasets in GIS while maintaining the mapping scales of the original input data. This ‘bottom-up’ approach indicates that the overall area of peatland in Europe is 593,727 km². Mires were found to cover more than 320,000 km² (around 54 % of the total peatland area). If shallow-peat lands (< 30 cm peat) in European Russia are also taken into account, the total peatland area in Europe is more than 1,000,000 km2, which is almost 10 % of the total surface area. Composite inventories of national peatland information, as presented here for Europe, may serve to identify gaps and priority areas for field survey, and help to cross-check and calibrate remote sensing based mapping approaches
Initial characterization of human DHRS1 (SDR19C1), a member of the short chain dehydrogenase/reductase superfamily.
Many enzymes from the short-chain dehydrogenase/reductase superfamily (SDR) have already been well characterized, particularly those that participate in crucial biochemical reactions in the human body (e.g. 11 beta-hydroxysteroid dehydrogenase 1, 17 beta-hydroxysteroid dehydrogenase 1 or carbonyl reductase 1). Several other SDR enzymes are completely or almost completely uncharacterized, such as DHRS1 (also known as SDR19C1). Based on our in silico and experimental approaches, DHRS1 is described as a likely monotopic protein that interacts with the membrane of the endoplasmic reticulum. The highest expression level of DHRS1 protein was observed in human liver and adrenals. The recombinant form of DHRS1 was purified using the detergent ndodecy1-beta-D-maltoside, and DHRS1 was proven to be an NADPH-dependent reductase that is able to catalyse the in vitro reductive conversion of some steroids (estrone, androstene-3,17-dione and cortisone), as well as other endogenous substances and xenobiotics. The expression pattern and enzyme activities fit to a role in steroid and/or xenobiotic metabolism; however, more research is needed to fully clarify the exact biological function of DHRS1
Microsecond MD simulations of human CYP2D6 wild-type and five allelic variants reveal mechanistic insights on the function.
Characterization of cytochrome P450 2D6 (CYP2D6) and the impact of the major identified allelic variants on the activity of one of the most dominating drug-metabolising enzymes is essential to increase drug safety and avoid adverse reactions. Microsecond molecular dynamics simulations have been performed to capture the dynamic signatures of this complex enzyme and five allelic variants with diverse enzymatic activity. In addition to the apo simulations, three substrates (bufuralol, veliparib and tamoxifen) and two inhibitors (prinomastat and quinidine) were included to explore their influence on the structure and dynamical features of the enzyme. Our results indicate that the altered enzyme activity can be attributed to changes in the hydrogen bonding network within the active site, and local structural differences in flexibility, position and shape of the binding pocket. In particular, the increased (CYP2D6*53) or the decreased (CYP2D6*17) activity seems to be related to a change in dynamics of mainly the BC loop due to a modified hydrogen bonding network around this region. In addition, the smallest active site volume was found for CYP2D6*4 (no activity). CYP2D6*2 (normal activity) showed no major differences in dynamic behaviour compared to the wild-type
High evolutionary turnover of satellite families in Caenorhabditis
Background. The high density of tandem repeat sequences (satellites) in nematode genomes and the availability of genome sequences from several species in the group offer a unique opportunity to better understand the evolutionary dynamics and the functional role of these sequences. We take advantage of the previously developed SATFIND program to study the satellites in four Caenorhabditis species and investigate these questions./nMethods. The identification and comparison of satellites is carried out in three steps. First we find all the satellites present in each species with the SATFIND program. Each satellite is defined by its length, number of repeats, and repeat sequence. Only satellites with at least ten repeats are considered. In the second step we build satellite families with a newly developed alignment program. Satellite families are defined by a consensus sequence and the number of satellites in the family. Finally we compare the consensus sequence of satellite families in different species./nResults. We give a catalog of individual satellites in each species. We have also identified satellite families with a related sequence and compare them in different species. We analyze the turnover of satellites: they increased in size through duplications of fragments of 100-300 bases. It appears that in many cases they have undergone an explosive expansion. In C. elegans we have identified a subset of large satellites that have strong affinity for the centromere protein CENP-A. We have also compared our results with those obtained from other species, including one nematode and three mammals./nConclusions. Most satellite families found in Caenorhabditis are species-specific; in particular those with long repeats. A subset of these satellites may facilitate the formation of kinetochores in mitosis. Other satellite families in C. elegans are either related to Helitron transposons or to meiotic pairing centers.We are thankful to Dr. Lourdes Campos for valuable suggestions. Also to Messrs. W. Blevins and F. Acosta-Reyes for help in the preparation of the manuscript and figures. This work was funded by Ministerio de Economía y Competitividad (TIN2010-21062-C02-01, TIN2013-45732-C4-3-P, BFU2012-36820 and 2009–10380) with additional Feder funds