1,075 research outputs found

    Cosmological implications of an evolutionary quantum gravity

    Full text link
    The cosmological implications of an evolutionary quantum gravity are analyzed in the context of a generic inhomogeneous model. The Schr\"{o}dinger problem is formulated and solved in the presence of a scalar field, an ultrarelativistic matter and a perfect gas regarded as the dust-clock. Considering the actual phenomenology, it is shown how the evolutionary approach overlaps the Wheeler-DeWitt one.Comment: 4 pages; to appear in the proceedings of the II Stueckelberg Workshop, Int.J.Mod.Phys.A, references adde

    On Matter Coupling in 5D Kaluza-Klein Model

    Full text link
    We analyze some unphysical features of the geodesic approach to matter coupling in a compactified Kaluza-Klein scenario, like the q/m puzzle and the huge massive modes. We propose a new approach, based on Papapetrou multipole expansion, that provides a new equation for the motion of a test particle. We show how this equation provides right couplings and does not generate huge massive modes.Comment: 4 pages, to appear in Proceedings of the II Stueckelberg Workshop - Int. J. Mod. Phys.

    Minisuperspace Model for Revised Canonical Quantum Gravity

    Full text link
    We present a reformulation of the canonical quantization of gravity, as referred to the minisuperspace; the new approach is based on fixing a Gaussian (or synchronous) reference frame and then quantizing the system via the reconstruction of a suitable constraint; then the quantum dynamics is re-stated in a generic coordinates system and it becomes dependent on the lapse function. The analysis follows a parallelism with the case of the non-relativistic particle and leads to the minisuperspace implementation of the so-called {\em kinematical action} as proposed in \cite{M02} (here almost coinciding also with the approach presented in \cite{KT91}). The new constraint leads to a Schr\"odinger equation for the system. i.e. to non-vanishing eigenvalues for the super-Hamiltonian operator; the physical interpretation of this feature relies on the appearance of a ``dust fluid'' (non-positive definite) energy density, i.e. a kind of ``materialization'' of the reference frame. As an example of minisuperspace model, we consider a Bianchi type IX Universe, for which some dynamical implications of the revised canonical quantum gravity are discussed. We also show how, on the classical limit, the presence of the dust fluid can have relevant cosmological issues. Finally we upgrade our analysis by its extension to the generic cosmological solution, which is performed in the so-called long-wavelength approximation. In fact, near the Big-Bang, we can neglect the spatial gradients of the dynamical variables and arrive to implement, in each space point, the same minisuperspace paradigm valid for the Bianchi IX model.Comment: 16 pages, no figures, to appear on International Journal of Modern Physics

    Covariant Formulation of the Invariant Measure for the Mixmaster Dynamics

    Get PDF
    We provide a Hamiltonian analysis of the Mixmaster Universe dynamics showing the covariant nature of its chaotic behavior with respect to any choice of time variable. We construct the appropriate invariant measure for the system (which relies on the existence of an ``energy-like'' constant of motion) without fixing the time gauge, i.e. the corresponding lapse function. The key point in our analysis consists of introducing generic Misner-Chitr\'e-like variables containing an arbitrary function, whose specification allows one to set up the same dynamical scheme in any time gauge.Comment: 11 pages, 1 figur

    Mixmaster Chaoticity as Semiclassical Limit of the Canonical Quantum Dynamics

    Full text link
    Within a cosmological framework, we provide a Hamiltonian analysis of the Mixmaster Universe dynamics on the base of a standard Arnowitt-Deser-Misner approach, showing how the chaotic behavior characterizing the evolution of the system near the cosmological singularity can be obtained as the semiclassical limit of the canonical quantization of the model in the same dynamical representation. The relation between this intrinsic chaotic behavior and the indeterministic quantum dynamics is inferred through the coincidence between the microcanonical probability distribution and the semiclassical quantum one.Comment: 9 pages, 1 figur

    Mixed diffusive-convective relaxation of a broad beam of energetic particles in cold plasma

    Full text link
    We revisit the applications of quasi-linear theory as a paradigmatic model for weak plasma turbulence and the associated bump-on-tail problem. The work, presented here, is built around the idea that large-amplitude or strongly shaped beams do not relax through diffusion only and that there exists an intermediate time scale where the relaxations are convective (ballistic-like). We cast this novel idea in the rigorous form of a self-consistent nonlinear dynamical model, which generalizes the classic equations of the quasi-linear theory to "broad" beams with internal structure. We also present numerical simulation results of the relaxation of a broad beam of energetic particles in cold plasma. These generally demonstrate the mixed diffusive-convective features of supra-thermal particle transport; and essentially depend on nonlinear wave-particle interactions and phase-space structures. Taking into account modes of the stable linear spectrum is crucial for the self-consistent evolution of the distribution function and the fluctuation intensity spectrum.Comment: 25 pages, 15 figure

    On the Gravitational Collapse of a Gas Cloud in Presence of Bulk Viscosity

    Full text link
    We analyze the effects induced by the bulk viscosity on the dynamics associated to the extreme gravitational collapse. Aim of the work is to investigate whether the presence of viscous corrections to the evolution of a collapsing gas cloud influence the fragmentation process. To this end we study the dynamics of a uniform and spherically symmetric cloud with corrections due to the negative pressure contribution associated to the bulk viscosity phenomenology. Within the framework of a Newtonian approach (whose range of validity is outlined), we extend to the viscous case either the Lagrangian, either the Eulerian motion of the system and we treat the asymptotic evolution in correspondence to a viscosity coefficient of the form ζ=ζ0ρnu\zeta=\zeta_0 \rho^{nu} (ρ\rho being the cloud density and ζ0=const.\zeta_0=const.). We show how, in the adiabatic-like behavior of the gas (i.e. when the politropic index takes values 4/3<γ≀5/34/3<\gamma\leq5/3), density contrasts acquire, asymptotically, a vanishing behavior which prevents the formation of sub-structures. We can conclude that in the adiabatic-like collapse the top down mechanism of structures formation is suppressed as soon as enough strong viscous effects are taken into account. Such a feature is not present in the isothermal-like (i.e. 1≀γ<4/31\leq\gamma<4/3) collapse because the sub-structures formation is yet present and outlines the same behavior as in the non-viscous case. We emphasize that in the adiabatic-like collapse the bulk viscosity is also responsible for the appearance of a threshold scale beyond which perturbations begin to increase.Comment: 13 pages, no figur

    General Relativity as Classical Limit of Evolutionary Quantum Gravity

    Full text link
    We analyze the dynamics of the gravitational field when the covariance is restricted to a synchronous gauge. In the spirit of the Noether theorem, we determine the conservation law associated to the Lagrangian invariance and we outline that a non-vanishing behavior of the Hamiltonian comes out. We then interpret such resulting non-zero ``energy'' of the gravitational field in terms of a dust fluid. This new matter contribution is co-moving to the slicing and it accounts for the ``materialization'' of a synchronous reference from the corresponding gauge condition. Further, we analyze the quantum dynamics of a generic inhomogeneous Universe as described by this evolutionary scheme, asymptotically to the singularity. We show how the phenomenology of such a model overlaps the corresponding Wheeler-DeWitt picture. Finally, we study the possibility of a Schr\"odinger dynamics of the gravitational field as a consequence of the correspondence inferred between the ensemble dynamics of stochastic systems and the WKB limit of their quantum evolution. We demonstrate that the time dependence of the ensemble distribution is associated with the first order correction in ℏ\hbar to the WKB expansion of the energy spectrum.Comment: 23 pages, to appear on Class. Quant. Gra

    The Jeans Instability in Presence of Viscous Effects

    Full text link
    An analysis of the gravitational instability in presence of dissipative effects is addressed. In particular, the standard Jeans Mechanism and the generalization in treating the Universe expansion are both analyzed when bulk viscosity affects the first-order Newtonian dynamics. As results, the perturbation evolution is founded to be damped by dissipative processes and the top-down mechanism of structure fragmentation is suppressed. In such a scheme, the value of the Jeans Mass remains unchanged also in presence of viscosity.Comment: 13 pages, 2 figure
    • 

    corecore