336 research outputs found
Stability of the Magnetopause of Disk-Accreting Rotating Stars
We discuss three modes of oscillation of accretion disks around rotating
magnetized neutron stars which may explain the separations of the kilo-Hertz
quasi periodic oscillations (QPO) seen in low mass X-ray binaries. The
existence of these compressible, non-barotropic magnetohydrodynamic (MHD) modes
requires that there be a maximum in the angular velocity of
the accreting material larger than the angular velocity of the star ,
and that the fluid is in approximately circular motion near this maximum rather
than moving rapidly towards the star or out of the disk plane into funnel
flows. Our MHD simulations show this type of flow and profile.
The first mode is a Rossby wave instability (RWI) mode which is radially
trapped in the vicinity of the maximum of a key function at
. The real part of the angular frequency of the mode is
, where is the azimuthal mode number.
The second mode, is a mode driven by the rotating, non-axisymmetric component
of the star's magnetic field. It has an angular frequency equal to the star's
angular rotation rate . This mode is strongly excited near the radius
of the Lindblad resonance which is slightly outside of . The third mode
arises naturally from the interaction of flow perturbation with the rotating
non-axisymmetric component of the star's magnetic field. It has an angular
frequency . We suggest that the first mode with is associated
with the upper QPO frequency, ; that the nonlinear interaction of the
first and second modes gives the lower QPO frequency, ;
and that the nonlinear interaction of the first and third modes gives the lower
QPO frequency , where .Comment: 10 pages, 7 figure
Numerical simulation of barge impact on a continuous girder bridge and bridge damage detection
Vessel collisions on bridge piers have been frequently reported. As many bridges are vital in transportation networks and serve as lifelines, bridge damage might leads to catastrophic consequences to life and economy. Therefore it is of great importance to protect bridge structures, especially bridge piers, against vessel impacts. Many researches have been conducted to predict vessel impact loads on bridge piers, and to design bridge piers or additional protective structures to resist such impact loads. Studies on assessing the bridge conditions after a vessel impact are, however, very limited. Current practice basically uses visual inspections, which not only requires very experienced engineers to perform the inspection in order to obtain creditable assessment, but also is often very difficult to inspect the underwater pier conditions. Therefore it is necessary to develop methods to give efficient, quantitative and reliable assessment of bridge conditions under ambient conditions after a vessel impact. This study explores the feasibility of using vibration measurements to quickly detect bridge conditions after a vessel impact.The study consists of three parts. First, a detailed numerical model of an example bridge structure is developed to calculate the vibrations under ambient hydrodynamic force. Then the model is used to simulate vessel impact on bridge pier and predict the pier damage. The vibration response analysis of the damaged bridge model is performed again in the third step to simulate vibration responses of the damaged bridge under ambient conditions. Using the vibration data obtained before and after vessel impact, the bridge vibration parameters such as vibration frequencies and mode shapes are extracted by using the frequency domain decomposition method. The bridge condition will then be identified through the changes in bridge vibration parameters and compared with the damage observed in the impact simulation. It is found that this method is capable of estimating bridge damage condition after barge impact accident
Geometric Resonances in Bose-Einstein Condensates with Two- and Three-Body Interactions
We investigate geometric resonances in Bose-Einstein condensates by solving
the underlying time-dependent Gross-Pitaevskii equation for systems with two-
and three-body interactions in an axially-symmetric harmonic trap. To this end,
we use a recently developed analytical method [Phys. Rev. A 84, 013618 (2011)],
based on both a perturbative expansion and a Poincar\'e-Lindstedt analysis of a
Gaussian variational approach, as well as a detailed numerical study of a set
of ordinary differential equations for variational parameters. By changing the
anisotropy of the confining potential, we numerically observe and analytically
describe strong nonlinear effects: shifts in the frequencies and mode coupling
of collective modes, as well as resonances. Furthermore, we discuss in detail
the stability of a Bose-Einstein condensate in the presence of an attractive
two-body interaction and a repulsive three-body interaction. In particular, we
show that a small repulsive three-body interaction is able to significantly
extend the stability region of the condensate.Comment: 27 pages, 13 figure
Metabolomic Plasticity in GM and Non-GM Potato Leaves in Response to Aphid Herbivory and Virus Infection
An important aspect of ecological safety of genetically
modified
(GM) plants is the evaluation of unintended effects on plant–insect
interactions. These interactions are to a large extent influenced
by the chemical composition of plants. This study uses NMR-based metabolomics
to establish a baseline of chemical variation to which differences
between a GM potato line and its parent cultivar are compared. The
effects of leaf age, virus infection, and aphid herbivory on plant
metabolomes were studied. The metabolome of the GM line differed from
its parent only in young leaves of noninfected plants. This effect
was small when compared to the baseline. Consistently, aphid performance
on excised leaves was influenced by leaf age, while no difference
in performance was found between GM and non-GM plants. The metabolomic
baseline approach is concluded to be a useful tool in ecological safety
assessment
(Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula
Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes
Largest ancient fortress of South-West Asia and the western world?:Recent fieldwork at Sasanian Qaleh Iraj at Pishva, Iran
The article presents recent works at Qale Iraj, near Varamin, Iran. My short contribution is on the Middle Persian ostraka found at the site
The Yin and Yang of Yeast Transcription: Elements of a Global Feedback System between Metabolism and Chromatin
When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating (RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the continuous adaptation of growth to environmental conditions
Book Review : der niedergang Irans nach dem tode Isma'ils I des Grausamen
Donated by Klaus KreiserReprinted from in : Bulletin of the School of Oriental and African Studies, Vol: 11, No: 4 / University of London, 1943-46
- …