257 research outputs found

    The attainable superconducting Tc in a model of phase coherence by percolation

    Full text link
    The onset of macroscopic phase coherence in superconducting cuprates is considered to be determined by random percolation between mesoscopic Jahn-Teller pairs, stripes or clusters. The model is found to predict the onset of superconductivity near 6% doping, maximum Tc near 15% doping and Tc= T* at optimum doping, and accounts for the destruction of superconductivity by Zn doping near 7%. The model also predicts a relation between the pairing (pseudogap) energy and Tc in terms of experimentally measurable quantities.Comment: 3 pages + 3 postscript figure

    Low-energy electronic structure in Y1-xCaxBa2Cu3O7-y comparison of t ime-resolved optical spectroscopy, NMR, neutron and tunneling data

    Full text link
    Time-resolved optical measurements give information on the quasiparticle relaxation dynamics in YBCO, from which the evolution of the gap with doping and temperature can be systematically deduced. In this paper these optical charge-channel `pseudogap' data are compared with the `pseudogap' obtained from the NMR Knight shift Ks, spin polarized neutron scattering (SPNS) and single particle tunneling measurements. A simple energy level diagram is proposed to explain the different `gap' magnitudes observed by different spectroscopies in Y1-xCaxBa2Cu3O7-y, whereby the spin gap Delta_s in NMR and SPNS corresponds to a triplet local pair state, while Delta_p in the charge excitation spectrum corresponds to the pair dissociation energy. At optimum doping and in the overdoped state, an additional T-dependent gap becomes evident, which closes at T_c, suggesting a cross-over to a more conventional BCS-like superconductivity scenario.Comment: 9 pages, 4 figures. Presented in HTS99, Miami, January 9
    • …
    corecore