2,938 research outputs found

    Heritable forms of hypertension

    Get PDF
    Among the causes of secondary hypertension are a group of disorders with a Mendelian inheritance pattern. Recent advances in molecular biology have unveiled the pathogenesis of hypertension in many of these conditions. Remarkably, the mechanism in every case has proved to be upregulation of sodium (Na) reabsorption in the distal nephron, with accompanying expansion of extracellular volume. In one group, the mutations involve the Na-transport machinery in distal tubule cells themselves: the distal convoluted tubule (DCT) cell and the principal cell of the collecting duct. Examples include Liddle’s syndrome, with an activating mutation of epithelial Na channel (ENaC); two types of Gordon’s syndrome, with mutations in two regulatory kinases [with no lysine (K) serine/threonine protein kinases (WNK)1 or WNK4]; and apparent mineralocorticoid excess (AME), with an inactivating mutation in the glucocorticoid-metabolizing 11β-hydroxysteroid dehydrogenase type 2 enzyme (11HD2). In another group, abnormal adrenal steroid production leads to inappropriate stimulation of the mineralocorticoid receptor (MR) in the distal nephron. The pathophysiology may involve inappropriate production of aldosterone [in glucocorticoid-remediable aldosteronism (GRA) and familial hyperaldosteronism type II (FH II)], of cortisol (in familial glucocorticoid resistance), or of other steroid metabolites (in congenital adrenal hyperplasia and GRA). In contrast to earlier beliefs, hypertension in many of the inherited disorders may be mild, and electrolyte and acid-base abnormalities are often not present. Monogenic hypertension should therefore enter the differential diagnosis of any child or adolescent with hypertension. Plasma renin activity (PRA) is the appropriate screening tool for all types of inherited hypertension

    Elastic lines on splayed columnar defects studied numerically

    Get PDF
    We investigate by exact optimization method properties of two- and three-dimensional systems of elastic lines in presence of splayed columnar disorder. The ground state of many lines is separable both in 2d and 3d leading to a random walk -like roughening in 2d and ballistic behavior in 3d. Furthermore, we find that in the case of pure splayed columnar disorder in contrast to point disorder there is no entanglement transition in 3d. Entanglement can be triggered by perturbing the pure splay system with point defects.Comment: 9 pages, 11 figures. Accepted for publication in PR

    New class of quantum error-correcting codes for a bosonic mode

    Full text link
    We construct a new class of quantum error-correcting codes for a bosonic mode which are advantageous for applications in quantum memories, communication, and scalable computation. These 'binomial quantum codes' are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the timestep between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to 'cat codes' based on superpositions of the coherent states, but offer several advantages such as smaller mean number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.Comment: Published versio

    The Electroweak Phase Transition in Ultra Minimal Technicolor

    Full text link
    We unveil the temperature-dependent electroweak phase transition in new extensions of the Standard Model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly-conformal dynamics achieved by the means of multiple matter representations. In particular, we focus on the low energy effective theory introduced to describe Ultra Minimal Walking Technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify regions of parameter space which yield a strong first order transition. A striking feature of the model is the existence of a second phase transition associated to the electroweak-singlet sector. The interplay between these two transitions leads to an extremely rich phase diagram.Comment: 38 RevTeX pages, 9 figure

    Stable recovery of coefficients in an inverse fault friction problem

    Full text link
    We consider the inverse fault friction problem of determining the friction coefficient in the Tresca friction model, which can be formulated as an inverse problem for differential inequalities. We show that the measurements of elastic waves during a rupture uniquely determine the friction coefficient at the rupture surface with explicit stability estimates
    • …
    corecore