91 research outputs found

    Formation of "Lightnings" in a Neutron Star Magnetosphere and the Nature of RRATs

    Full text link
    The connection between the radio emission from "lightnings" produced by the absorption of high-energy photons from the cosmic gamma-ray background in a neutron star magnetosphere and radio bursts from rotating radio transients (RRATs) is investigated. The lightning length reaches 1000 km; the lightning radius is 100 m and is comparable to the polar cap radius. If a closed magnetosphere is filled with a dense plasma, then lightnings are efficiently formed only in the region of open magnetic field lines. For the radio emission from a separate lightning to be observed, the polar cap of the neutron star must be directed toward the observer and, at the same time, the lightning must be formed. The maximum burst rate is related to the time of the plasma outflow from the polar cap region. The typical interval between two consecutive bursts is ~100 s. The width of a single radio burst can be determined both by the width of the emission cone formed by the lightning emitting regions at some height above the neutron star surface and by a finite lightning lifetime. The width of the phase distribution for radio bursts from RRATs, along with the integrated pulse width, is determined by the width of the bundle of open magnetic field lines at the formation height of the radio emission. The results obtained are consistent with the currently available data and are indicative of a close connection between RRATs, intermittent pulsars, and extreme nullers.Comment: 24 pages, no figures, references update

    Phase and Intensity Distributions of Individual Pulses of PSR B0950+08

    Get PDF
    The distribution of the intensities of individual pulses of PSR B0950+08 as a function of the longitudes at which they appear is analyzed. The flux density of the pulsar at 111 MHz varies strongly from day to day (by up to a factor of 13) due to the passage of the radiation through the interstellar plasma (interstellar scintillation). The intensities of individual pulses can exceed the amplitude of the mean pulse profile, obtained by accumulating 770 pulses, by more than an order of magnitude. The intensity distribution along the mean profile is very different for weak and strong pulses. The differential distribution function for the intensities is a power law with index n = -1.1 +- 0.06 up to peak flux densities for individual pulses of the order of 160 Jy

    GEMINGA: NEW OBSERVATIONS AT LOW RADIO FREQUENCIES

    Get PDF
    ABSTRACT. After nearly 10 years, we have succeeded to detect radio emission from Geminga more again. In this report we present new evidence for presence of radio emission from Geminga in the range 42-112 MHz. The observations were carried out on two sensitive transit radio telescopes We used three new digital receivers to detect the pulses and to obtain dynamic spectra.The examples of mean pulse profiles are presented. Exact value of the dispersion measure have been calculated using the simultaneous observations at three frequencies

    Detection of Five New RRATs at 111 MHz

    Full text link
    Results of 111-MHz monitoring observations carried out on the Big Scanning Antenna of the Pushchino Radio Astronomy Observatory during September 1-28, 2015 are presented. Fifty-four pulsating sources were detected at declinations 9o<δ<+42o-9^o < \delta < +42^o. Forty-seven of these are known pulsars, five are new sources, and two are previously discovered transients. Estimates of the peak flux densities and dispersion measures are presented or all these sources.Comment: published in Astronomy Report, translated by Yandex translator with correction of scientific lexis, 8 pages, 2 figures, 3 table

    Review of scientific topics for Millimetron space observatory

    Full text link
    This paper describes outstanding issues in astrophysics and cosmology that can be solved by astronomical observations in a broad spectral range from far infrared to millimeter wavelengths. The discussed problems related to the formation of stars and planets, galaxies and the interstellar medium, studies of black holes and the development of the cosmological model can be addressed by the planned space observatory Millimetron (the "Spectr-M" project) equipped with a cooled 10-m mirror. Millimetron can operate both as a single-dish telescope and as a part of a space-ground interferometer with very long baseline.Comment: The translation of the original article in Physics Uspekhi http://ufn.ru/ru/articles/2014/12/c

    Toward An Empirical Theory of Pulsar Emission. VII. On the Spectral Behavior of Conal Beam Radii and Emission Heights

    Get PDF
    In this paper we return to the old problem of conal component-pair widths and profile dimensions. Observationally, we consider a set of 10 pulsars with prominent conal component pairs, for which well measured profiles exist over the largest frequency range now possible. Apart from some tendency to narrow at high frequency, the conal components exhibit almost constant widths. We use all three profile measures, the component separation as well as the outside half-power and 10% widths, to determine conal beam radii, which are the focus of our subsequent analysis. These radii at different frequencies are well fitted by a relationship introduced by Thorsett (1991), but the resulting parameters are highly correlated. Three different types of behavior are found: one group of stars exhibits a continuous variation of beam radius which can be extrapolated down to the stellar surface along the ``last open field lines''; a second group exhibits beam radii which asymptotically approach a minimum high frequency value that is 3--5 times larger; and a third set shows almost no spectral change in beam radius at all. The first two behaviors are associated with outer-cone component pairs; whereas the constant separation appears to reflect inner-cone emission.Comment: 21 pages, 11 figures, accepted for publication in Astrophysical Journal, uses aaste

    Absorption of Gamma-Ray Photons in a Vacuum Neutron Star Magnetosphere: I. Electron-Positron Pair Production

    Full text link
    The production of electron-positron pairs in a vacuum neutron star magnetosphere is investigated for both low (compared to the Schwinger one) and high magnetic fields. The case of a strong longitudinal electric field where the produced electrons and positrons acquire a stationary Lorentz factor in a short time is considered. The source of electron-positron pairs has been calculated with allowance made for the pair production by curvature and synchrotron photons. Synchrotron photons are shown to make a major contribution to the total pair production rate in a weak magnetic field. At the same time, the contribution from bremsstrahlung photons may be neglected. The existence of a time delay due to the finiteness of the electron and positron acceleration time leads to a great reduction in the electron-positron plasma generation rate compared to the case of a zero time delay. The effective local source of electron-positron pairs has been constructed. It can be used in the hydrodynamic equations that describe the development of a cascade after the absorption of a photon from the cosmic gamma-ray background in a neutron star magnetosphere.Comment: 29 pages, 1 figur

    The spark-associated soliton model for pulsar radio emission

    Get PDF
    We propose a new, self-consistent theory of coherent pulsar radio emission based on the non-stationary sparking model of Ruderman & Sutherland (1975), modified by Gil & Sendyk (2000) in the accompanying Paper I. According to these authors, the polar cap is populated as densely as possible by a number of sparks with a characteristic perpendicular dimension D approximately equal to the polar gap height scale h, separated from each other also by about h. Each spark reappears in approximately the same place on the polar cap for a time scale much longer than its life-time and delivers to the open magnetosphere a sequence of electron-positron clouds which flow orderly along a flux tube of dipolar magnetic field lines. The overlapping of particles with different momenta from consecutive clouds leads to effective two-stream instability, which triggers electrostatic Langmuir waves at the altitudes of about 50 stellar radii. The electrostatic oscillations are modulationally unstable and their nonlinear evolution results in formation of ``bunch-like'' charged solitons. A characteristic soliton length along magnetic field lines is about 30 cm, so they are capable of emitting coherent curvature radiation at radio wavelengths. The net soliton charge is about 10^21 fundamental charges, contained within a volume of about 10^14 cm^3. For a typical pulsar, there are about 10^5 solitons associated with each of about 25 sparks operating on the polar cap at any instant. One soliton moving relativisticaly along dipolar field lines with a Lorentz factor of the order of 100 generates a power of about 10^21 erg/s by means of curvature radiation. Then the total power of a typical radio pulsar can be estimated as being about 10^(27-28) erg/s.Comment: 27 pages, 5 figures, accepted by Ap
    corecore