11 research outputs found
Enhanced control of self-doping in halide perovskites for improved thermoelectric performance
Metal halide perovskites have emerged as promising photovoltaic materials, but, despite ultralow thermal conductivity, progress on developing them for thermoelectrics has been limited. Here, we report the thermoelectric properties of all-inorganic tin based perovskites with enhanced air stability. Fine tuning the thermoelectric properties of the films is achieved by self-doping through the oxidation of tin (ΙΙ) to tin (ΙV) in a thin surface-layer that transfers charge to the bulk. This separates the doping defects from the transport region, enabling enhanced electrical conductivity. We show that this arises due to a chlorine-rich surface layer that acts simultaneously as the source of free charges and a sacrificial layer protecting the bulk from oxidation. Moreover, we achieve a figure-of-merit (ZT) of 0.14 ± 0.01 when chlorine-doping and degree of the oxidation are optimised in tandem
Charge Delocalization in an Heterobimetallic Ferrocene-(Vinyl)Ru(CO)Cl(PiPr3)2 System
Ru(CH═CHFc)Cl(CO)(PiPr3)2 (Fc = ferrocenyl, (η5-C5H4)Fe(η5-C5H5)), 1, has been prepared by hydroruthenation of ethynylferrocene and characterized by NMR, IR, ESI-MS, and Moessbauer spectroscopy and by X-ray crystallography. Complex 1 features conjoined ferrocene and (vinyl)ruthenium redox sites and undergoes two consecutive reversible oxidations. Pure samples of crystalline, monooxidized 1•+ have been prepared by chemical oxidation of 1 with the ferrocenium ion. Structural comparison with 1 reveals an increase of Fe−C and Fe−Cpcentr. bond lengths and ring tilting of the Cp decks, as is typical of ferrocenium ions, but also a discernible lengthening of the Ru−C(CO) and Ru−P bonds and a shortening of the Ru−C(vinyl) bond upon oxidation. This supports the general idea of charge delocalization over both redox sites in 1•+. Band shifts of the charge-sensitive IR labels (ν(CO) for Ru, ν(C−H, Cp) for Fc), the rather small g-anisotropy in the ESR spectrum of 1•+, and the results of quantum chemical calculations indicate that in solution the positive charge partly resides on the vinyl ruthenium moiety. Comparison of IR shifts in the solid state and in solution and the quadrupole splitting in the Moessbauer spectrum of powdered 1•+ point to a larger extent of charge localization on the ferrocenyl site in solid samples. This is probably due to CH···F hydrogen bonding interactions between the cyclopentadienyl hydrogen atoms of the radical cations and the PF6− counterions. Monooxidized 1•+ displays low-energy electronic absorption bands at 1370 and 2150 nm. According to quantum chemical calculations, the underlying transitions are largely localized on the ferrocene part of the molecule with only little charge transfer into the vinyl ruthenium subunit. The second oxidation is more biased toward the (vinyl)ruthenium site