152 research outputs found

    Electron shielding of the nuclear magnetic moment in hydrogen-like atom

    Full text link
    The correction to the wave function of the ground state in a hydrogen-like atom due to an external homogenous magnetic field is found exactly in the parameter ZαZ\alpha. The j=1/2j=1/2 projection of the correction to the wave function of the ns1/2ns_{1/2} state due to the external homogeneous magnetic field is found for arbitrary nn. The j=3/2j=3/2 projection of the correction to the wave function of the ns1/2ns_{1/2} state due to the nuclear magnetic moment is also found for arbitrary nn. Using these results, we have calculated the shielding of the nuclear magnetic moment by the ns1/2ns_{1/2} electron.Comment: 15 page

    The Kazhdan-Lusztig conjecture for finite W-algebras

    Full text link
    We study the representation theory of finite W-algebras. After introducing parabolic subalgebras to describe the structure of W-algebras, we define the Verma modules and give a conjecture for the Kac determinant. This allows us to find the completely degenerate representations of the finite W-algebras. To extract the irreducible representations we analyse the structure of singular and subsingular vectors, and find that for W-algebras, in general the maximal submodule of a Verma module is not generated by singular vectors only. Surprisingly, the role of the (sub)singular vectors can be encapsulated in terms of a `dual' analogue of the Kazhdan-Lusztig theorem for simple Lie algebras. These involve dual relative Kazhdan-Lusztig polynomials. We support our conjectures with some examples, and briefly discuss applications and the generalisation to infinite W-algebras.Comment: 11 page

    Deformed oscillator algebras for two dimensional quantum superintegrable systems

    Full text link
    Quantum superintegrable systems in two dimensions are obtained from their classical counterparts, the quantum integrals of motion being obtained from the corresponding classical integrals by a symmetrization procedure. For each quantum superintegrable systema deformed oscillator algebra, characterized by a structure function specific for each system, is constructed, the generators of the algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to a state with finite dimensional degeneracy can then be obtained in an economical way from solving a system of two equations satisfied by the structure function, the results being in agreement to the ones obtained from the solution of the relevant Schrodinger equation. The method shows how quantum algebraic techniques can simplify the study of quantum superintegrable systems, especially in two dimensions.Comment: 22 pages, THES-TP 10/93, hep-the/yymmnn

    Casimir Effect as a Test for Thermal Corrections and Hypothetical Long-Range Interactions

    Full text link
    We have performed a precise experimental determination of the Casimir pressure between two gold-coated parallel plates by means of a micromachined oscillator. In contrast to all previous experiments on the Casimir effect, where a small relative error (varying from 1% to 15%) was achieved only at the shortest separation, our smallest experimental error (0.5\sim 0.5%) is achieved over a wide separation range from 170 nm to 300 nm at 95% confidence. We have formulated a rigorous metrological procedure for the comparison of experiment and theory without resorting to the previously used root-mean-square deviation, which has been criticized in the literature. This enables us to discriminate among different competing theories of the thermal Casimir force, and to resolve a thermodynamic puzzle arising from the application of Lifshitz theory to real metals. Our results lead to a more rigorous approach for obtaining constraints on hypothetical long-range interactions predicted by extra-dimensional physics and other extensions of the Standard Model. In particular, the constraints on non-Newtonian gravity are strengthened by up to a factor of 20 in a wide interaction range at 95% confidence.Comment: 17 pages, 7 figures, Sixth Alexander Friedmann International Seminar on Gravitation and Cosmolog

    Three dimensional quadratic algebras: Some realizations and representations

    Full text link
    Four classes of three dimensional quadratic algebras of the type \lsb Q_0 , Q_\pm \rsb == ±Q±\pm Q_\pm, \lsb Q_+ , Q_- \rsb == aQ02+bQ0+caQ_0^2 + bQ_0 + c, where (a,b,c)(a,b,c) are constants or central elements of the algebra, are constructed using a generalization of the well known two-mode bosonic realizations of su(2)su(2) and su(1,1)su(1,1). The resulting matrix representations and single variable differential operator realizations are obtained. Some remarks on the mathematical and physical relevance of such algebras are given.Comment: LaTeX2e, 23 pages, to appear in J. Phys. A: Math. Ge

    Deformed algebras, position-dependent effective masses and curved spaces: An exactly solvable Coulomb problem

    Full text link
    We show that there exist some intimate connections between three unconventional Schr\"odinger equations based on the use of deformed canonical commutation relations, of a position-dependent effective mass or of a curved space, respectively. This occurs whenever a specific relation between the deforming function, the position-dependent mass and the (diagonal) metric tensor holds true. We illustrate these three equivalent approaches by considering a new Coulomb problem and solving it by means of supersymmetric quantum mechanical and shape invariance techniques. We show that in contrast with the conventional Coulomb problem, the new one gives rise to only a finite number of bound states.Comment: 22 pages, no figure. Archive version is already official. Published by JPA at http://stacks.iop.org/0305-4470/37/426

    On some nonlinear extensions of the angular momentum algebra

    Full text link
    Deformations of the Lie algebras so(4), so(3,1), and e(3) that leave their so(3) subalgebra undeformed and preserve their coset structure are considered. It is shown that such deformed algebras are associative for any choice of the deformation parameters. Their Casimir operators are obtained and some of their unitary irreducible representations are constructed. For vanishing deformation, the latter go over into those of the corresponding Lie algebras that contain each of the so(3) unitary irreducible representations at most once. It is also proved that similar deformations of the Lie algebras su(3), sl(3,R), and of the semidirect sum of an abelian algebra t(5) and so(3) do not lead to associative algebras.Comment: 22 pages, plain TeX + preprint.sty, no figures, to appear in J.Phys.

    An SU(2) Analog of the Azbel--Hofstadter Hamiltonian

    Full text link
    Motivated by recent findings due to Wiegmann and Zabrodin, Faddeev and Kashaev concerning the appearence of the quantum U_q(sl(2)) symmetry in the problem of a Bloch electron on a two-dimensional magnetic lattice, we introduce a modification of the tight binding Azbel--Hofstadter Hamiltonian that is a specific spin-S Euler top and can be considered as its ``classical'' analog. The eigenvalue problem for the proposed model, in the coherent state representation, is described by the S-gap Lam\'e equation and, thus, is completely solvable. We observe a striking similarity between the shapes of the spectra of the two models for various values of the spin S.Comment: 19 pages, LaTeX, 4 PostScript figures. Relation between Cartan and Cartesian deformation of SU(2) and numerical results added. Final version as will appear in J. Phys. A: Math. Ge

    An infinite family of superintegrable systems from higher order ladder operators and supersymmetry

    Full text link
    We will discuss how we can obtain new quantum superintegrable Hamiltonians allowing the separation of variables in Cartesian coordinates with higher order integrals of motion from ladder operators. We will discuss also how higher order supersymmetric quantum mechanics can be used to obtain systems with higher order ladder operators and their polynomial Heisenberg algebra. We will present a new family of superintegrable systems involving the fifth Painleve transcendent which possess fourth order ladder operators constructed from second order supersymmetric quantum mechanics. We present the polynomial algebra of this family of superintegrable systems.Comment: 8 pages, presented at ICGTMP 28, accepted for j.conf.serie

    Families of superintegrable Hamiltonians constructed from exceptional polynomials

    Full text link
    We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable
    corecore