1,650 research outputs found

    Cross-section and polarization of neutrino-produced Ï„\tau's made simple

    Full text link
    Practical formulae are derived for the cross-section and polarization of the Ï„\tau lepton produced in deep-inelastic neutrino-nucleon scattering in the frame of the simple quark-parton model.Comment: 10 pages, no figure

    Estimating the number of change-points in a two-dimensional segmentation model without penalization

    Full text link
    In computational biology, numerous recent studies have been dedicated to the analysis of the chromatin structure within the cell by two-dimensional segmentation methods. Motivated by this application, we consider the problem of retrieving the diagonal blocks in a matrix of observations. The theoretical properties of the least-squares estimators of both the boundaries and the number of blocks proposed by L\'evy-Leduc et al. [2014] are investigated. More precisely, the contribution of the paper is to establish the consistency of these estimators. A surprising consequence of our results is that, contrary to the onedimensional case, a penalty is not needed for retrieving the true number of diagonal blocks. Finally, the results are illustrated on synthetic data.Comment: 30 pages, 8 figure

    Estimating the large-scale angular power spectrum in the presence of systematics: a case study of Sloan Digital Sky Survey quasars

    Full text link
    The angular power spectrum is a powerful statistic for analysing cosmological signals imprinted in the clustering of matter. However, current galaxy and quasar surveys cover limited portions of the sky, and are contaminated by systematics that can mimic cosmological signatures and jeopardise the interpretation of the measured power spectra. We provide a framework for obtaining unbiased estimates of the angular power spectra of large-scale structure surveys at the largest scales using quadratic estimators. The method is tested by analysing the 600 CMASS mock catalogues constructed by Manera et al. (2013) for the Baryon Oscillation Spectroscopic Survey (BOSS). We then consider the Richards et al. (2009) catalogue of photometric quasars from the Sixth Data Release (DR6) of the Sloan Digital Sky Survey (SDSS), which is known to include significant stellar contamination and systematic uncertainties. Focusing on the sample of ultraviolet-excess (UVX) sources, we show that the excess clustering power present on the largest-scales can be largely mitigated by making use of improved sky masks and projecting out the modes corresponding to the principal systematics. In particular, we find that the sample of objects with photometric redshift 1.3<zp<2.21.3 < z_p < 2.2 exhibits no evidence of contamination when using our most conservative mask and mode projection. This indicates that any residual systematics are well within the statistical uncertainties. We conclude that, using our approach, this sample can be used for cosmological studies.Comment: 18 pages, 18 figures. Version accepted by MNRA

    Sub-ballistic behavior in quantum systems with L\'evy noise

    Full text link
    We investigate the quantum walk and the quantum kicked rotor in resonance subjected to noise with a L\'evy waiting time distribution. We find that both systems have a sub-ballistic wave function spreading as shown by a power-law tail of the standard deviation.Comment: 4 pages, 4 figure

    Anyons, group theory and planar physics

    Full text link
    Relativistic and nonrelativistic anyons are described in a unified formalism by means of the coadjoint orbits of the symmetry groups in the free case as well as when there is an interaction with a constant electromagnetic field. To deal with interactions we introduce the extended Poincar\'e and Galilei Maxwell groups.Comment: 22 pages, journal reference added, bibliography update

    Galilean Lee Model of the Delta Function Potential

    Get PDF
    The scattering cross section associated with a two dimensional delta function has recently been the object of considerable study. It is shown here that this problem can be put into a field theoretical framework by the construction of an appropriate Galilean covariant theory. The Lee model with a standard Yukawa interaction is shown to provide such a realization. The usual results for delta function scattering are then obtained in the case that a stable particle exists in the scattering channel provided that a certain limit is taken in the relevant parameter space. In the more general case in which no such limit is taken finite corrections to the cross section are obtained which (unlike the pure delta function case) depend on the coupling constant of the model.Comment: 7 pages, latex, no figure

    From Golden Spirals to Constant Slope Surfaces

    Full text link
    In this paper, we find all constant slope surfaces in the Euclidean 3-space, namely those surfaces for which the position vector of a point of the surface makes constant angle with the normal at the surface in that point. These surfaces could be thought as the bi-dimensional analogue of the generalized helices. Some pictures are drawn by using the parametric equations we found.Comment: 11 pages, 8 figure

    (In)finite extensions of algebras from their Inonu-Wigner contractions

    Full text link
    The way to obtain massive non-relativistic states from the Poincare algebra is twofold. First, following Inonu and Wigner the Poincare algebra has to be contracted to the Galilean one. Second, the Galilean algebra is to be extended to include the central mass operator. We show that the central extension might be properly encoded in the non-relativistic contraction. In fact, any Inonu-Wigner contraction of one algebra to another, corresponds to an infinite tower of abelian extensions of the latter. The proposed method is straightforward and holds for both central and non-central extensions. Apart from the Bargmann (non-zero mass) extension of the Galilean algebra, our list of examples includes the Weyl algebra obtained from an extension of the contracted SO(3) algebra, the Carrollian (ultra-relativistic) contraction of the Poincare algebra, the exotic Newton-Hooke algebra and some others. The paper is dedicated to the memory of Laurent Houart (1967-2011).Comment: 7 pages, revtex style; v2: Minor corrections, references added; v3: Typos correcte
    • …
    corecore