108 research outputs found

    Clocking the formation of today's largest galaxies: Wide field integral spectroscopy of Brightest Cluster Galaxies and their surroundings

    Full text link
    The formation and evolution of local brightest cluster galaxies (BCGs) is investigated by determining the stellar populations and dynamics from the galaxy core, though the outskirts and into the intracluster light (ICL). Integral spectroscopy of 23 BCGs observed out to 4 r_e is collected and high signal-to-noise regions are identified. Stellar population synthesis codes are used to determine the age, metallicity, velocity, and velocity dispersion of stars within each region. The intracluster light (ICL) spectra are best modeled with populations that are younger and less metal-rich than those of the BCG cores. The average BCG core age of the sample is 13.3±\pm 2.8 Gyr and the average metallicity is [Fe/H] = 0.30 ±\pm 0.09, whereas for the ICL the average age is 9.2±\pm3.5 Gyr and the average metallicity is [Fe/H] = 0.18±\pm0.16. The velocity dispersion profile is seen to be rising or flat in most of the sample (17/23), and those with rising values reach the value of the host cluster's velocity dispersion in several cases. The most extended BCGs are closest to the peak of the cluster's X-ray luminosity. The results are consistent with the idea that the BCG cores and inner regions formed quickly and long ago, with the outer regions and ICL forming more recently, and continuing to assemble through minor merging. Any recent star formation in the BCGs is a minor component, and is associated with the cluster cool core status.Comment: 22 pages, 21 figures, MNRAS, accepte

    FLUORENYL FATTY-ACIDS AS FLUORESCENT-PROBES FOR DEPTH-DEPENDENT ANALYSIS OF ARTIFICIAL AND NATURAL MEMBRANES

    No full text
    The main objective of depth-dependent fluorescent probes is to provide information at a distinct position in the membrane hydrophobic core. We report here a series of fluorenyl fatty acids which can probe both artificial and natural membranes at different depths. Long-chain acids (C4, C6, and C8) are attached to fluorene chromophore on one side, and a hydrophobic tail (C4) is attached on the other side, so that on incorporation in membranes the carboxyl end of the molecule is oriented toward the membrane-water interface and the hydrophobic tail points toward the membrane interior. These acids can be readily partitioned into membranes. The disposition of these fluorenyl fatty acids in membranes was studied by fluorescence quenching using iodide as a water-soluble and 9,10-dibromostearic acid as a lipid-soluble quencher. The results obtained indicate that attachment of a hydrophobic tail is essential for effective alignment of depth-dependent fluorescent probes. The length of the hydrophobic tail was varied and an n-butyl chain was found to be most effective. In all cases, the compounds with a hydrophobic tail were found to be probing the membrane deeper than their counterparts with no hydrophobic tail. Further, the compounds with hydrophobic tails were more strongly immobilized in the membrane as indicated by fluorescence polarization studies. However, the effect of such a tail varied with membrane type. Thus in artificial membranes an n-butyl chain was found to be extremely important for effective monitoring by shallow probes like 4-(2'-fluorenyl)butyric acid, whereas in erythrocyte ghost membranes the same n-butyl tail was found to be more desirable for deeper probes like 8-(2'-fluorenyl)octanoic acid. The general molecular design strategy reported here can be extended to other fluorescent probes and photoactivable reagents for depth-dependent analysis of membranes

    Alkaloids of Voacanga Africana, Stapf. I. Voacafrine and Voacafricine—Two New Alkaloids

    No full text

    Transverse location of new fluorene based depth dependent fluorescent probes in membranes- quenching studies with 9,10-dibromostearic acid

    No full text
    Fluorescence quenching technique has been used to determine the transverse location of the fluorescent fluorenyl fatty acids in single bilayer vesicles prepared from phosphatidylcholine. The fluorenyl fatty acids used here are 2-fluorenyl acetic, butyric, hexanoic and octanoic acid. In addition a new type of fluorescent probe, 7-n-butyl-fluorene-2-butyric acid, wherein a hydrophobic tail is attached to 2-fluorenyl-butyric acid has also been used to study its effect on alignment of these probes in the membrane. The association properties of the quencher 9,10-dibromostearic acid have been analysed. It is observed that the quencher association involves partitioning into the vesicles and does not involve any binding to the vesicles. The absolute partition coefficient of the 9,10-dibromostearic acid which partitions between the aqueous and the lipid phases of the phospholipid dispersion has been evaluated. Using this information the corrected Stern-Volmer plots were drawn and the bimolecular quenching constant evaluated

    Depth-dependent photolabelling of membrane hydrophobic core with 9-diazofluorene-2-butyric acid

    No full text
    Hydrophobic photoactivable reagents, which readily partition into membranes, have proved very useful for studying membrane hydrophobic core. These reagents have been linked to fatty acids in order to obtain amphipathic photoactivable reagents which label membranes more effectively. By varying the length of these amphipathic reagents, an attempt to label membrane hydrophobic core at different depths can be made. We report here 9-diazofluorene-2-butyric acid as a new photoactivable reagent which labels the single bilayer vesicles prepared from egg phosphatidylcholine. The labelling site on the fatty acyl chains could be traced to be between the carbon atom 4 and 6. The new probe thus labels the membrane at a site which is proximal to what can be predicted from its length and transverse location in membranes

    The Ichthyotoxic Principles of Zanthoxylum clava-herculis

    No full text
    corecore