6 research outputs found

    Soil quality characteristics of traditional agroforestry systems in Mouzaki area, central Greece

    No full text
    Agroforestry systems (AFS) are characterized by growing trees and crops on the same area, aiming at sustainable production and better natural resources management, whilst potentially contributing to climate change mitigation. One of the most important benefits related to the productivity of AFS is the maintenance or improvement of soil quality. In the present study, qualitative characteristics of soils were evaluated in eight traditional smallholder AFS in the Municipality of Mouzaki, central Greece. The AFS were both silvoarable and silvopastoral systems and they were located either in lowland or semi-mountainous areas. Within the research areas, the effect of the trees on soil parameters was investigated. Soil samples were collected at two depths (0–30 and 30–60 cm) and at three distances from the tree base, corresponding to half, twice, triple or quadruple the tree canopy width. Soil organic matter (OM), total N, available P, exchangeable K, electrical conductivity (ECe), cation exchange capacity, pH and bulk density were determined. The effects of altitude and land use (agroforestry practice) on the soil quality parameters were also evaluated. Soil quality characteristics varied among the eight AFS. The distance from the tree significantly affected only ECe (p = 0.042), which decreased from a mean value of 0.31 dS/m to 0.25 dS/m, as the distance from the tree increased. Silvoarable systems presented significantly higher pH, ECe, available P (p < 0.001) and total N (p = 0.012) content than silvopastoral. Increased altitude resulted in significantly higher levels of OM and total N within the top 30 cm depths (p < 0.001); mean soil OM was 1.7% and total N 0.11% in the AFS in the lowland, whereas in the semi-mountainous areas 2.4% and 0.16%, respectively. The results of the research provided evidence of soil carbon sequestration, thus indicating the potential of AFS to mitigate climate change. © 2022, The Author(s), under exclusive licence to Springer Nature B.V

    ENVIRONMENTAL PERCEPTIONS OF STUDENTS, FARMERS, AND OTHER ECONOMICALLY ACTIVE MEMBERS OF THE LOCAL POPULATION NEAR THE PROTECTED AREA OF AXIOS, LOUDIAS AND ALIAKMONAS ESTUARIES, IN GREECE

    No full text
    This study concerns a protected area in northern Greece and examines how local people's occupation influences their perception of environmental impacts and their views and information about the area. The target groups were local residents that (a) were employed in the primary sector, (b) were employed in other economic sectors, and (c) were students or high-school seniors. Use of pesticides and fertilizers and industrial waste disposal were identified as sources of environmental impacts by the large majority of the total sample (>80%). Much lower (30-62%) was the perception of impacts from the other, more local stress sources. Primary-sector respondents (mostly farmers) scored lower in their environmental perceptivity; nevertheless, they were highly aware that some of their practices have negative impacts on the environment. Students outperformed the other groups in having visited the local information centre and in having attended an environmental information/awareness event about the protected area; despite this, they also had the highest proportions of 'don't-know' answers. Small differences (even less than 5 km) in the distance of respondents' residence from the protected area led to significant differences in environmental perceptivity. There is both a need for and interest from the local people to get better informed. As sufficient knowledge of the area and of the threats to its integrity is a requirement for the adoption and acceptance of measures aiming to moderate such threats, environmental information/ awareness events should be organized by the managing authorities. These should focus on issues specific to the area rather than of general environmental nature and target primarily people employed in the primary sector that live close to the protected area and students

    Land use demands for the clue-s spatiotemporal model in an agroforestry perspective

    No full text
    Rural landscape evolution models are used as tools for the analysis of the causes and impact of land use changes on landscapes. The CLUE-S (the Conversion of Land Use and its Effects at Small regional extent) model was developed to simulate the changes in current land use, by using quantitative relationships between land uses and driving factors combined with a dynamic modeling of land use competition. One of the modules that build the “CLUE-S” is the non-spatial subset of the model that calculates the temporal evolution of the land use/cover under several socio-economic scenarios. The purpose of this research was to estimate the demands of land use in the area of Mouzaki, Thessaly plain, Greece with the ultimate goal of using them in the non-spatial module of the CLUE-S to predict the evolution of land uses in year 2040. These estimations are the quantitative prediction of the spatial change for all land use types at the aggregate level. Three models of forecasting the future land cover in the area were simulated, in order to obtain a clear view of the different land uses in the future. We distinguished three model-scenarios for calculating the demand-forecasts: (a) business as usual (BAU) scenario, that deals with a linear projection of the current land use demands, (b) rapid economic development (RED) scenario, and (c) ecological land protection (ELP) scenario. In the BAU scenario the land use demands for the year 2040 were calculated using linear interpolation utilizing historical data from 1960 to 2020. In the RED scenario, the demands were calculated by maximizing the economic benefit of land uses, and in the ELP scenario the demands were calculated by maximizing the environmental benefit of land uses. Furthermore, a multi-criteria analysis was performed to find the trade-offs between economic benefit maximization and environmental benefit optimization. It was found that the agricultural lands reach their maximum area under the RED scenario, while reaching their lower bound for the ELP scenario. The same goes for agroforestry systems. The grasslands reach their lower bound under the ELP scenario, while they achieve a higher value under the RED scenario. Concerning the silvopastoral woodlands, although an increase is foreseen under the BAU scenario, it appears that they reach their lower bound in the other two scenarios, RED and ELP. Forests receive intermediate values and cover a larger area under the ELP scenario compared with the RED scenario. The expected forest cover under the BAU scenario is higher. Moreover, sparse and dense shrublands receive their lower bound for both optimization scenarios, while the settlements reach the upper bound for the RED scenario and the lower one under the ELP scenario. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Land Use Changes for Investments in Silvoarable Agriculture Projected by the CLUE-S Spatio-Temporal Model

    No full text
    Investment in biology-based technological innovations is a key requirement for the development of modern agriculture/forestry. The expansion of innovative biological technologies includes changes in crops/cultivations, such as the transition from intensive monocultures to multiple crops of lower agrochemical inputs with the integration of woody trees/shrubs or animals, represented by Agroforestry. This innovative biological technology is further promoted at the European Union (EU) level by powerful institutions such as the Green Deal and the new CAP, mainly by tools such as ecoschemes and agri-environmental and climate measures (AECMs). The use of integrated regional spatiotemporal models, such as CLUE-S, to predict land use changes in the framework of Agroforestry is rather restricted. This paper examines Agroforestry as a vehicle that can contribute to achieving the rural development of the region of Thessaly, Greece. It sets a time horizon for reviewing the changes that are expected in the most important units of land uses of the rural landscape of the municipality of Mouzaki, western Thessaly plain, in the year 2040, which serves as model land for the region of Thessaly. It examines these changes with the effect of three (3) socio-economic scenarios: (a) a linear operating scenario (business as usual, BAU), (b) an ecological land protection (ELP) scenario, and (c) a rapid economic development (RED) scenario. These scenarios were introduced in the non-spatial module of the CLUE-S spatiotemporal model, while in the spatial module sixteen (16) characteristic landscape parameters were introduced as independent variables. The most important land use units, including traditional silvoarable and silvopastoral woodland systems, were the dependent variables. The simulations of the changes of the land use units showed that under the RED scenario, in the year 2040 the extent of the silvoarable systems is expected to increase significantly (57%) compared to the reference year of 2020, while the rest of the land use units under the other scenarios are mainly regulated by depopulation/abandonment of the rural areas and the processes of natural succession. The fact that the extent of silvoarable systems is increasing, in combination with the favorable institu-tional environment created by European rural policies, gives impetus to regional rural development through investments in the agricultural sector and mainly in Agroforestry systems. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
    corecore