1,528 research outputs found
Entropic Lattice Boltzmann Method for Moving and Deforming Geometries in Three Dimensions
Entropic lattice Boltzmann methods have been developed to alleviate intrinsic
stability issues of lattice Boltzmann models for under-resolved simulations.
Its reliability in combination with moving objects was established for various
laminar benchmark flows in two dimensions in our previous work Dorschner et al.
[11] as well as for three dimensional one-way coupled simulations of
engine-type geometries in Dorschner et al. [12] for flat moving walls. The
present contribution aims to fully exploit the advantages of entropic lattice
Boltzmann models in terms of stability and accuracy and extends the methodology
to three-dimensional cases including two-way coupling between fluid and
structure, turbulence and deformable meshes. To cover this wide range of
applications, the classical benchmark of a sedimenting sphere is chosen first
to validate the general two-way coupling algorithm. Increasing the complexity,
we subsequently consider the simulation of a plunging SD7003 airfoil at a
Reynolds number of Re = 40000 and finally, to access the model's performance
for deforming meshes, we conduct a two-way coupled simulation of a
self-propelled anguilliform swimmer. These simulations confirm the viability of
the new fluid-structure interaction lattice Boltzmann algorithm to simulate
flows of engineering relevance.Comment: submitted to Journal of Computational Physic
Fluid-Structure Interaction with the Entropic Lattice Boltzmann Method
We propose a novel fluid-structure interaction (FSI) scheme using the
entropic multi-relaxation time lattice Boltzmann (KBC) model for the fluid
domain in combination with a nonlinear finite element solver for the structural
part. We show validity of the proposed scheme for various challenging set-ups
by comparison to literature data. Beyond validation, we extend the KBC model to
multiphase flows and couple it with FEM solver. Robustness and viability of the
entropic multi-relaxation time model for complex FSI applications is shown by
simulations of droplet impact on elastic superhydrophobic surfaces
- …