171 research outputs found

    The Coincidence Limit of the Graviton Propagator in de Donder Gauge on de Sitter Background

    Full text link
    We explicitly work out the de Sitter breaking contributions to the recent solution for the de Donder gauge graviton propagator on de Sitter. We also provide explicit power series expansions for the two structure functions, which are suitable for implementing dimensional regularization. And we evaluate the coincidence limit of the propagator.Comment: 41 pages, uses LaTeX 2e, version 2 has some typoes correcte

    Quantum Gravity Corrections to the One Loop Scalar Self-Mass during Inflation

    Full text link
    We compute the one loop corrections from quantum gravity to the self-mass-squared of a massless, minimally coupled scalar on a locally de Sitter background. The calculation was done using dimensional regularization and renormalized by subtracting fourth order BPHZ counterterms. Our result should determine whether quantum gravitational loop corrections can significantly alter the dynamics of a scalar inflaton.Comment: 47 pages, 3 figures, 20 tables, uses LaTeX 2 epsilon, version 2 revised for publication in Physical Review

    One Loop Corrected Mode Functions for SQED during Inflation

    Full text link
    We solve the one loop effective scalar field equations for spatial plane waves in massless, minimally coupled scalar quantum electrodynamics on a locally de Sitter background. The computation is done in two different gauges: a non-de Sitter invariant analogue of Feynman gauge, and in the de Sitter invariant, Lorentz gauge. In each case our result is that the finite part of the conformal counterterm can be chosen so that the mode functions experience no significant one loop corrections at late times. This is in perfect agreement with a recent, all orders stochastic prediction.Comment: 26 pages, uses LaTeX 2 epsilon, no figures, version 2 has an updated reference lis

    Charged Scalar Self-Mass during Inflation

    Full text link
    We compute the one loop self-mass of a charged massless, minimally coupled scalar in a locally de Sitter background geometry. The computation is done in two different gauges: the noninvariant generalization of Feynman gauge which gives the simplest expression for the photon propagator and the de Sitter invariant gauge of Allen and Jacobson. In each case dimensional regularization is employed and fully renormalized results are obtained. By using our result in the linearized, effective field equations one can infer how the scalar responds to the dielectric medium produced by inflationary particle production. We also work out the result for a conformally coupled scalar. Although the conformally coupled case is of no great physical interest the fact that we obtain a manifestly de Sitter invariant form for its self-mass-squared establishes that our noninvariant gauge introduces no physical breaking of de Sitter invariance at one loop order.Comment: 41 pages, LaTeX 2epsilon, 3 figures, uses axodra

    Scalar Field Equations from Quantum Gravity during Inflation

    Full text link
    We exploit a previous computation of the self-mass-squared from quantum gravity to include quantum corrections to the scalar evolution equation. The plane wave mode functions are shown to receive no significant one loop corrections at late times. This result probably applies as well to the inflaton of scalar-driven inflation. If so, there is no significant correction to the ϕϕ\phi \phi correlator that plays a crucial role in computations of the power spectrum.Comment: 19 pages, 5 table

    A Completely Regular Quantum Stress Tensor with w<1w < -1

    Full text link
    For many quantum field theory computations in cosmology it is not possible to use the flat space trick of obtaining full, interacting states by evolving free states over infinite times. State wave functionals must be specified at finite times and, although the free states suffice to obtain the lowest order effects, higher order corrections necessarily involve changes of the initial state. Failing to correctly change the initial state can result in effective field equations which diverge on the initial value surface, or which contain tedious sums of terms that redshift like inverse powers of the scale factor. In this paper we verify a conjecture from 2004 that the lowest order initial state correction can indeed absorb the initial value divergences and all the redshifting terms of the two loop expectation value of the stress tensor of a massless, minimally coupled scalar with a quartic self interaction on nondynamical de Sitter background.Comment: 23 pages, 1 figur

    Dissipative Future Universe without Big Rip

    Full text link
    The present study deals with dissipative future universe without big rip in context of Eckart formalism. The generalized chaplygin gas, characterized by equation of state p=Aρ1αp=-\frac{A}{\rho^\frac{1}{\alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late time. It is demonstrated that, if the cosmic dark energy behaves like a fluid with equation of state p=ωρp=\omega\rho; ω<1\omega < -1, as well as chaplygin gas simultaneously then the big rip problem does not arises and the scale factor is found to be regular for all time.Comment: 6 pages, 2 figures, To appear in Int. J. Theor. Phy

    Non-local SFT Tachyon and Cosmology

    Full text link
    Cosmological scenarios built upon the generalized non-local String Field Theory and pp-adic tachyons are examined. A general kinetic operator involving an infinite number of derivatives is studied as well as arbitrary parameter pp. The late time dynamics of just the tachyon around the non-perturbative vacuum is shown to leave the cosmology trivial. A late time behavior of the tachyon and the scale factor of the FRW metric in the presence of the cosmological constant or a perfect fluid with w>1w>-1 is constructed explicitly and a possibility of non-vanishing oscillations of the total effective state parameter around the phantom divide is proven.Comment: 17 pages, LaTeX; v2: JHEP3 class is used, references adde

    One-loop corrections to the curvature perturbation from inflation

    Full text link
    An estimate of the one-loop correction to the power spectrum of the primordial curvature perturbation is given, assuming it is generated during a phase of single-field, slow-roll inflation. The loop correction splits into two parts, which can be calculated separately: a purely quantum-mechanical contribution which is generated from the interference among quantized field modes around the time when they cross the horizon, and a classical contribution which comes from integrating the effect of field modes which have already passed far beyond the horizon. The loop correction contains logarithms which may invalidate the use of naive perturbation theory for cosmic microwave background (CMB) predictions when the scale associated with the CMB is exponentially different from the scale at which the fundamental theory which governs inflation is formulated.Comment: 28 pages, uses feynmp.sty and ioplatex journal style. v2: supersedes version published in JCAP. Some corrections and refinements to the discussion and conclusions. v3: Corrects misidentification of quantum correction with an IR effect. Improvements to the discussio
    corecore