71 research outputs found

    Spatial Organization in the Reaction A + B --> inert for Particles with a Drift

    Full text link
    We describe the spatial structure of particles in the (one dimensional) two-species annihilation reaction A + B --> 0, where both species have a uniform drift in the same direction and like species have a hard core exclusion. For the case of equal initial concentration, at long times, there are three relevant length scales: the typical distance between similar (neighboring) particles, the typical distance between dissimilar (neighboring) particles, and the typical size of a cluster of one type of particles. These length scales are found to be generically different than that found for particles without a drift.Comment: 10 pp of gzipped uuencoded postscrip

    Scaling Model of Annihilation-Diffusion Kinetics for Charged Particles with Long-Range Interactions

    Full text link
    We propose the general scaling model for the diffusio n-annihilation reaction A++A−⟶∅A_{+} + A_{-} \longrightarrow \emptyset with long-range power-law i nteractions. The presented scaling arguments lead to the finding of three different regimes, dep ending on the space dimensionality d and the long-range force power e xponent n. The obtained kinetic phase diagram agrees well with existing simulation data and approximate theoretical results.Comment: RevTEX, 7 pages, no figures, accepted to Physical Review

    Two-Species Annihilation with Drift: A Model with Continuous Concentration-Decay Exponents

    Full text link
    We propose a model for diffusion-limited annihilation of two species, A+B→AA+B\to A or BB, where the motion of the particles is subject to a drift. For equal initial concentrations of the two species, the density follows a power-law decay for large times. However, the decay exponent varies continuously as a function of the probability of which particle, the hopping one or the target, survives in the reaction. These results suggest that diffusion-limited reactions subject to drift do not fall into a limited number of universality classes.Comment: 10 pages, tex, 3 figures, also available upon reques

    Classification of phase transitions and ensemble inequivalence, in systems with long range interactions

    Full text link
    Systems with long range interactions in general are not additive, which can lead to an inequivalence of the microcanonical and canonical ensembles. The microcanonical ensemble may show richer behavior than the canonical one, including negative specific heats and other non-common behaviors. We propose a classification of microcanonical phase transitions, of their link to canonical ones, and of the possible situations of ensemble inequivalence. We discuss previously observed phase transitions and inequivalence in self-gravitating, two-dimensional fluid dynamics and non-neutral plasmas. We note a number of generic situations that have not yet been observed in such systems.Comment: 42 pages, 11 figures. Accepted in Journal of Statistical Physics. Final versio

    Self-similarity and power-like tails in nonconservative kinetic models

    Full text link
    In this paper, we discuss the large--time behavior of solution of a simple kinetic model of Boltzmann--Maxwell type, such that the temperature is time decreasing and/or time increasing. We show that, under the combined effects of the nonlinearity and of the time--monotonicity of the temperature, the kinetic model has non trivial quasi-stationary states with power law tails. In order to do this we consider a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution. The same idea is applied to investigate the large-time behavior of an elementary kinetic model of economy involving both exchanges between agents and increasing and/or decreasing of the mean wealth. In this last case, the large-time behavior of the solution shows a Pareto power law tail. Numerical results confirm the previous analysis

    Anisotropic Diffusion-Limited Reactions with Coagulation and Annihilation

    Full text link
    One-dimensional reaction-diffusion models A+A -> 0, A+A -> A, and $A+B -> 0, where in the latter case like particles coagulate on encounters and move as clusters, are solved exactly with anisotropic hopping rates and assuming synchronous dynamics. Asymptotic large-time results for particle densities are derived and discussed in the framework of universality.Comment: 13 pages in plain Te

    Multispecies reaction-diffusion systems

    Full text link
    Multispecies reaction-diffusion systems, for which the time evolution equation of correlation functions become a closed set, are considered. A formal solution for the average densities is found. Some special interactions and the exact time dependence of the average densities in these cases are also studied. For the general case, the large time behaviour of the average densities has also been obtained.Comment: LaTeX file, 15 pages, to appear in Phys. Rev.

    Coarsening of Sand Ripples in Mass Transfer Models with Extinction

    Full text link
    Coarsening of sand ripples is studied in a one-dimensional stochastic model, where neighboring ripples exchange mass with algebraic rates, Γ(m)∼mγ\Gamma(m) \sim m^\gamma, and ripples of zero mass are removed from the system. For γ<0\gamma < 0 ripples vanish through rare fluctuations and the average ripples mass grows as \avem(t) \sim -\gamma^{-1} \ln (t). Temporal correlations decay as t−1/2t^{-1/2} or t−2/3t^{-2/3} depending on the symmetry of the mass transfer, and asymptotically the system is characterized by a product measure. The stationary ripple mass distribution is obtained exactly. For γ>0\gamma > 0 ripple evolution is linearly unstable, and the noise in the dynamics is irrelevant. For γ=1\gamma = 1 the problem is solved on the mean field level, but the mean-field theory does not adequately describe the full behavior of the coarsening. In particular, it fails to account for the numerically observed universality with respect to the initial ripple size distribution. The results are not restricted to sand ripple evolution since the model can be mapped to zero range processes, urn models, exclusion processes, and cluster-cluster aggregation.Comment: 10 pages, 8 figures, RevTeX4, submitted to Phys. Rev.

    Local multiresolution order in community detection

    Full text link
    Community detection algorithms attempt to find the best clusters of nodes in an arbitrary complex network. Multi-scale ("multiresolution") community detection extends the problem to identify the best network scale(s) for these clusters. The latter task is generally accomplished by analyzing community stability simultaneously for all clusters in the network. In the current work, we extend this general approach to define local multiresolution methods, which enable the extraction of well-defined local communities even if the global community structure is vaguely defined in an average sense. Toward this end, we propose measures analogous to variation of information and normalized mutual information that are used to quantitatively identify the best resolution(s) at the community level based on correlations between clusters in independently-solved systems. We demonstrate our method on two constructed networks as well as a real network and draw inferences about local community strength. Our approach is independent of the applied community detection algorithm save for the inherent requirement that the method be able to identify communities across different network scales, with appropriate changes to account for how different resolutions are evaluated or defined in a particular community detection method. It should, in principle, easily adapt to alternative community comparison measures.Comment: 19 pages, 11 figure

    On a kinetic model for a simple market economy

    Full text link
    In this paper, we consider a simple kinetic model of economy involving both exchanges between agents and speculative trading. We show that the kinetic model admits non trivial quasi-stationary states with power law tails of Pareto type. In order to do this we consider a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution of wealth among individuals. For this equation the stationary state can be easily derived and shows a Pareto power law tail. Numerical results confirm the previous analysis
    • …
    corecore