2,371 research outputs found

    FRW barotropic zero modes: Dynamical systems observability

    Full text link
    The dynamical systems observability properties of barotropic bosonic and fermionic FRW cosmological oscillators are investigated. Nonlinear techniques for dynamical analysis have been recently developed in many engineering areas but their application has not been extended beyond their standard field. This paper is a small contribution to an extension of this type of dynamical systems analysis to FRW barotropic cosmologies. We find that determining the Hubble parameter of barotropic FRW universes does not allow the observability, i.e., the determination of neither the barotropic FRW zero mode nor of its derivative as dynamical cosmological states. Only knowing the latter ones correspond to a rigorous dynamical observability in barotropic cosmologyComment: 10 pages, 0 figure

    Model Independent Electromagnetic corrections in hadronic Ï„\tau decays

    Get PDF
    The long distance correction to the total decay width of the τ±→K0π±ν\tau^{\pm}\to K^{0}\pi^{\pm}\nu decay is calculated in a model independent approach where a discrimination of photons in the Bremmstrahlung process is assumed. This correction is completely free of UV and IR singularities and moreover, it satisfies electromagnetic gauge invariance. The result of this work can be applied on the tau decays: τ±→π±π0ν,K±π0ν\tau^{\pm}\to \pi^{\pm}\pi^{0}\nu, K^{\pm}\pi^{0}\nu

    PAMELA's cosmic positron from decaying LSP in SO(10) SUSY GUT

    Full text link
    We propose two viable scenarios explaining the recent observations on cosmic positron excess. In both scenarios, the present relic density in the Universe is assumed to be still supported by thermally produced WIMP or LSP (\chi). One of the scenarios is based on two dark matter (DM) components (\chi,X) scenario, and the other is on SO(10) SUSY GUT. In the two DM components scenario, extremely small amount of non-thermally produced meta-stable DM component [O(10^{-10}) < n_X /n_\chi] explains the cosmic positron excess. In the SO(10) model, extremely small R-parity violation for LSP decay to e^\pm is naturally achieved with a non-zero VEV of the superpartner of one right-handed neutrino (\tilde{\nu}^c) and a global symmetry.Comment: 6 pages, Talks presented in PASCOS, SUSY, and COSMO/CosPA in 201

    Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake

    Full text link
    Nanoparticles (NPs) engineered for biomedical applications are meant to be in contact with protein-rich physiological fluids. These proteins are usually adsorbed onto the NP surface, forming a swaddling layer called protein corona that influences cell internalization. We present a study on protein adsorption onto different magnetic NPs (MNPs) when immersed in cell culture medium, and how these changes affect the cellular uptake. Two colloids with magnetite cores of 25 nm, same hydrodynamic size and opposite surface charge were in situ coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size increase. After 24 h of incubation large MNP-protein aggregates with hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were observed. Each cluster contained an estimated number of magnetic cores between 450 and 1000, indicating the formation of large aggregates with a "plum pudding" structure of MNPs embedded into a protein network of negative surface charge irrespective of the MNP_core charge. We demonstrated that PEI-MNPs are incorporated in much larger amounts than the PAA-MNPs units. Quantitative analysis showed that SH-SY5Y cells can incorporate 100 per cent of the added PEI-MNPs up to about 100 pg per cell, whereas for PAA-MNPs the uptake was less than 50 percent. The final cellular distribution showed also notable differences regarding partial attachment to the cell membrane. These results highlight the need to characterize the final properties of MNPs after protein adsorption in biological media, and demonstrate the impact of these properties on the internalization mechanisms in neural cells.Comment: 32 pages, 10 figure

    High-gain nonlinear observer for simple genetic regulation process

    Full text link
    High-gain nonlinear observers occur in the nonlinear automatic control theory and are in standard usage in chemical engineering processes. We apply such a type of analysis in the context of a very simple one-gene regulation circuit. In general, an observer combines an analytical differential-equation-based model with partial measurement of the system in order to estimate the non-measured state variables. We use one of the simplest observers, that of Gauthier et al., which is a copy of the original system plus a correction term which is easy to calculate. For the illustration of this procedure, we employ a biological model, recently adapted from Goodwin's old book by De Jong, in which one plays with the dynamics of the concentrations of the messenger RNA coding for a given protein, the protein itself, and a single metabolite. Using the observer instead of the metabolite, it is possible to rebuild the non-measured concentrations of the mRNA and the proteinComment: 9 pages, one figur
    • …
    corecore