228 research outputs found
Localized Solutions of the Non-Linear Klein-Gordon Equation in Many Dimensions
We present a new complex non-stationary particle-like solution of the
non-linear Klein-Gordon equation with several spatial variables. The
construction is based on reduction to an ordinary differential equation.Comment: 4 pages, 1 figur
Representations of solutions of the wave equation based on relativistic wavelets
A representation of solutions of the wave equation with two spatial
coordinates in terms of localized elementary ones is presented. Elementary
solutions are constructed from four solutions with the help of transformations
of the affine Poincar\'e group, i.e., with the help of translations, dilations
in space and time and Lorentz transformations. The representation can be
interpreted in terms of the initial-boundary value problem for the wave
equation in a half-plane. It gives the solution as an integral representation
of two types of solutions: propagating localized solutions running away from
the boundary under different angles and packet-like surface waves running along
the boundary and exponentially decreasing away from the boundary. Properties of
elementary solutions are discussed. A numerical investigation of coefficients
of the decomposition is carried out. An example of the field created by sources
moving along a line with different speeds is considered, and the dependence of
coefficients on speeds of sources is discussed.Comment: submitted to J. Phys. A: Math. Theor., 20 pages, 6 figure
Transient quantum evolution of 2D electrons under photoexcitation of a deep center
We have considered the ballistic propagation of the 2D electron Wigner
distribution, which is excited by an ultrashort optical pulse from a
short-range impurity into the first quantized subband of a selectively-doped
heterostructure with high mobility. Transient ionization of a deep local state
into a continuum conduction c-band state is described. Since the quantum nature
of the photoexcitation, the Wigner distribution over 2D plane appears to be an
alternating-sign function. Due to a negative contribution to the Wigner
function, the mean values (concentration, energy, and flow) demonstrate an
oscillating transient evolution in contrast to the diffusive classical regime
of propagation.Comment: 8 pages, 6 figures, pape
Collective and static properties of model two-component plasmas
Classical MD data on the charge-charge dynamic structure factor of
two-component plasmas (TCP) modeled in Phys. Rev. A 23, 2041 (1981) are
analyzed using the sum rules and other exact relations. The convergent power
moments of the imaginary part of the model system dielectric function are
expressed in terms of its partial static structure factors, which are computed
by the method of hypernetted chains using the Deutsch effective potential.
High-frequency asymptotic behavior of the dielectric function is specified to
include the effects of inverse bremsstrahlung. The agreement with the MD data
is improved, and important statistical characteristics of the model TCP, such
as the probability to find both electron and ion at one point, are determined.Comment: 25 pages, 6 figures, 5 tables. Published in Physical Review E
http://link.aps.org/abstract/PRE/v76/e02640
Characterization of deep impurities in semiconductors by terahertz tunneling ionization
Tunneling ionization in high frequency fields as well as in static fields is suggested as a method for the characterization of deep impurities in semiconductors. It is shown that an analysis of the field and temperature dependences of the ionization probability allows to obtain defect parameters like the charge of the impurity, tunneling times, the Huang–Rhys parameter, the difference between optical and thermal binding energy, and the basic structure of the defect adiabatic potentials. Compared to static fields, high frequency electric fields in the terahertz-range offer various advantages, as they can be applied contactlessly and homogeneously even to bulk samples using the intense radiation of a high power pulsed far-infrared laser. Furthermore, impurity ionization with terahertz radiation can be detected as photoconductive signal with a very high sensitivity in a wide range of electric field strengths
Tunneling spin-galvanic effect
It has been shown that tunneling of spin-polarized electrons through a
semiconductor barrier is accompanied by generation of an electric current in
the plane of the interfaces. The direction of this interface current is
determined by the spin orientation of the electrons, in particular the current
changes its direction if the spin orientation changes the sign. Microscopic
origin of such a 'tunneling spin-galvanic' effect is the spin-orbit
coupling-induced dependence of the barrier transparency on the spin orientation
and the wavevector of electrons.Comment: 3 pages, 2 figure
Fast projectile stopping power of quantal multi-component strongly coupled plasmas
The Bethe-Larkin formula for the fast projectile stopping power is extended
to multi-component plasmas. The results are to contribute to the correct
interpretation of the experimental data, which could permit to test the
existing and future models of thermodynamic, static, and dynamic
characteristics of strongly coupled Coulomb systems.Comment: 4 pages, to appear in PR
Why and when the Minkowski's stress tensor can be used in the problem of Casimir force acting on bodies embedded in media
It is shown that the criticism by Raabe and Welsch of the
Dzyaloshinskii-Lifshitz-Pitaevskii theory of the van der Waals-Casimir forces
inside a medium is based on misunderstandings. It is explained why and at which
conditions one can use the ''Minkowski-like '' stress tensor for calculations
of the forces. The reason, why approach of Raabe and Welsch is incorrect, is
discussed.Comment: Comment, 2 pages. 2 misprints were correcte
Spatial structure of an individual Mn acceptor in GaAs
The wave function of a hole bound to an individual Mn acceptor in GaAs is
spatially mapped by scanning tunneling microscopy at room temperature and an
anisotropic, cross-like shape is observed. The spatial structure is compared
with that from an envelope-function, effective mass model, and from a
tight-binding model. This demonstrates that anisotropy arising from the cubic
symmetry of the GaAs crystal produces the cross-like shape for the hole
wave-function. Thus the coupling between Mn dopants in GaMnAs mediated by such
holes will be highly anisotropic.Comment: 3 figures, submitted to PR
- …