4,305 research outputs found

    Interface Conformal Anomalies

    Full text link
    We consider two d≥2d \geq 2 conformal field theories (CFTs) glued together along a codimension one conformal interface. The conformal anomaly of such a system contains both bulk and interface contributions. In a curved-space setup, we compute the heat kernel coefficients and interface central charges in free theories. The results are consistent with the known boundary CFT data via the folding trick. In d=4d=4, two interface invariants generally allowed as anomalies turn out to have vanishing interface charges. These missing invariants are constructed from components with odd parity with respect to flipping the orientation of the defect. We conjecture that all invariants constructed from components with odd parity may have vanishing coefficient for symmetric interfaces, even in the case of interacting interface CFT.Comment: 14 pp; v2: clarifications added, introduction expande

    Programmable quantum state discriminators with simple programs

    Full text link
    We describe a class of programmable devices that can discriminate between two quantum states. We consider two cases. In the first, both states are unknown. One copy of each of the unknown states is provided as input, or program, for the two program registers, and the data state, which is guaranteed to be prepared in one of the program states, is fed into the data register of the device. This device will then tell us, in an optimal way, which of the templates stored in the program registers the data state matches. In the second case, we know one of the states while the other is unknown. One copy of the unknown state is fed into the single program register, and the data state which is guaranteed to be prepared in either the program state or the known state, is fed into the data register. The device will then tell us, again optimally, whether the data state matches the template or is the known state. We determine two types of optimal devices. The first performs discrimination with minimum error, the second performs optimal unambiguous discrimination. In all cases we first treat the simpler problem of only one copy of the data state and then generalize the treatment to n copies. In comparison to other works we find that providing n > 1 copies of the data state yields higher success probabilities than providing n > 1 copies of the program states.Comment: 17 pages, 5 figure

    Pieri resolutions for classical groups

    Get PDF
    We generalize the constructions of Eisenbud, Fl{\o}ystad, and Weyman for equivariant minimal free resolutions over the general linear group, and we construct equivariant resolutions over the orthogonal and symplectic groups. We also conjecture and provide some partial results for the existence of an equivariant analogue of Boij-S\"oderberg decompositions for Betti tables, which were proven to exist in the non-equivariant setting by Eisenbud and Schreyer. Many examples are given.Comment: 40 pages, no figures; v2: corrections to sections 2.2, 3.1, 3.3, and some typos; v3: important corrections to sections 2.2, 2.3 and Prop. 4.9 added, plus other minor corrections; v4: added assumptions to Theorem 3.6 and updated its proof; v5: Older versions misrepresented Peter Olver's results. See "New in this version" at the end of the introduction for more detail

    A good leaf order on simplicial trees

    Full text link
    Using the existence of a good leaf in every simplicial tree, we order the facets of a simplicial tree in order to find combinatorial information about the Betti numbers of its facet ideal. Applications include an Eliahou-Kervaire splitting of the ideal, as well as a refinement of a recursive formula of H\`a and Van Tuyl for computing the graded Betti numbers of simplicial trees.Comment: 17 pages, to appear; Connections Between Algebra and Geometry, Birkhauser volume (2013

    Quark-Gluon Plasma/Black Hole duality from Gauge/Gravity Correspondence

    Full text link
    The Quark-Gluon Plasma (QGP) is the QCD phase of matter expected to be formed at small proper-times in the collision of heavy-ions at high energy. Experimental observations seem to favor a strongly coupled QCD plasma with the hydrodynamic properties of a quasi-perfect fluid, i.e. rapid thermalization (or isotropization) and small viscosity. The theoretical investigation of such properties is not obvious, due to the the strong coupling. The Gauge/Gravity correspondence provides a stimulating framework to explore the strong coupling regime of gauge theories using the dual string description. After a brief introduction to Gauge/Gravity duality, and among various existing studies, we focus on challenging problems of QGP hydrodynamics, such as viscosity and thermalization, in terms of gravitational duals of both the static and relativistically evolving plasma. We show how a Black Hole geometry arises naturally from the dual properties of a nearly perfect fluid and explore the lessons and prospects one may draw for actual heavy ion collisions from the Gauge/Gravity duality approach.Comment: 6 pages, 4 figures, invited talk at the EPS HEP 2007 Conference, Manchester (UK), and at the ``Deuxiemes rencontres PQG-France'', Etretat (2007); reference adde
    • …
    corecore