1,198 research outputs found
Ferromagnetism in Oriented Graphite Samples
We have studied the magnetization of various, well characterized samples of
highly oriented pyrolitic graphite (HOPG), Kish graphite and natural graphite
to investigate the recently reported ferromagnetic-like signal and its possible
relation to ferromagnetic impurities. The magnetization results obtained for
HOPG samples for applied fields parallel to the graphene layers - to minimize
the diamagnetic background - show no correlation with the magnetic impurity
concentration. Our overall results suggest an intrinsic origin for the
ferromagnetism found in graphite. We discuss possible origins of the
ferromagnetic signal.Comment: 11 figure
Modified gravity and its reconstruction from the universe expansion history
We develop the reconstruction program for the number of modified gravities:
scalar-tensor theory, , and string-inspired, scalar-Gauss-Bonnet
gravity. The known (classical) universe expansion history is used for the
explicit and successful reconstruction of some versions (of special form or
with specific potentials) from all above modified gravities. It is demonstrated
that cosmological sequence of matter dominance, decceleration-acceleration
transition and acceleration era may always emerge as cosmological solutions of
such theory. Moreover, the late-time dark energy FRW universe may have the
approximate or exact CDM form consistent with three years WMAP data.
The principal possibility to extend this reconstruction scheme to include the
radiation dominated era and inflation is briefly mentioned. Finally, it is
indicated how even modified gravity which does not describe the
matter-dominated epoch may have such a solution before acceleration era at the
price of the introduction of compensating dark energy.Comment: LaTeX file, 24 pages, no figure, prepared for the proceedings of ERE
2006, minor correction
Measurement of the α ratio and (n, γ) cross section of 235U from 0.2 to 200 eV at n_TOF
We measured the neutron capture-to-fission cross-section ratio (α ratio) and the capture cross section of 235U between 0.2 and 200 eV at the n_TOF facility at CERN. The simultaneous measurement of neutron-induced capture and fission rates was performed by means of the n_TOF BaF2 Total Absorption Calorimeter (TAC), used for detection of γ rays, in combination with a set of micromegas detectors used as fission tagging detectors. The energy dependence of the capture cross section was obtained with help of the 6 Li(n,t) standard reaction determining the n_TOF neutron fluence; the well-known integral of the 235U(n, f ) cross section between 7.8 and 11 eV was then used for its absolute normalization. The α ratio, obtained with slightly higher statistical fluctuations, was determined directly, without need for any reference cross section. To perform the analysis of this measurement we developed a new methodology to correct the experimentally observed effect that the probabilities of detecting a fission reaction in the TAC and the micromegas detectors are not independent. The results of this work have been used in a new evaluation of 235U performed within the scope of the Collaborative International Evaluated Library Organisation (CIELO) Project, and are consistent with the ENDF/B-VIII.0 and JEFF-3.3 capture cross sections below 4 eV and above 100 eV. However, the measured capture cross section is on average 10% larger between 4 and 100 eV.This work was supported in part by the Spanish national company for radioactive waste management, ENRESA,
through the CIEMAT-ENRESA agreements on “Transmutación de radionucleidos de vida larga como soporte a la gestión de residuos radioactivos de alta actividad”; by the
Spanish Ministerio de Economía, Industria y Competitividad,
through the projects FPA2014-53290-C2-1, FPA2016-76765-
P, and FPA2017-82647-P; and by the European Commission
7th Framework Programme project CHANDA (Grant No.
FP7-605203)
Present Status and Future Programs of the n_TOF Experiment
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented
Mechanical Biosensors in Biological and Food Area: a Review
A review of state the art about the structure, classification and operation of biosensors applied in food and biological areas is presented. This review is focused to mechanical biosensors that use mill, micro and nanocantilevers. Basic concepts of atomic force microscopy and optical systems, used as testing platform of biosensors are described. The most funcionalized strategies and geometrical configurations are also explained. Mathematical methods for evaluating the performance in static and dynamic mode of the mechanical biosensors are reviewed and examples of application in biological and food areas are provided. An overall description of the operational effect of operation conditions and design variables on the sensitivity devices is also proposed. A brief description of the design processes and manufacturing of cantilevers based silicon technology as well as information about BioMEMS and BioNEMS are provided. Finally, overall tends in research, development and commercialization of biosensors are described briefly as well as probable areas of development in food biosensors. Thereby, this review provides an overall view of biosensors, as an exploratory guide to identify the most important aspects of this technology
The Sensitivity of HAWC to High-Mass Dark Matter Annihilations
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view
detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in
central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC
will observe gamma rays and cosmic rays with an array of water Cherenkov
detectors. The full HAWC array is scheduled to be operational in Spring 2015.
In this paper, we study the HAWC sensitivity to the gamma-ray signatures of
high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be
sensitive to diverse searches for dark matter annihilation, including
annihilation from extended dark matter sources, the diffuse gamma-ray emission
from dark matter annihilation, and gamma-ray emission from non-luminous dark
matter subhalos. Here we consider the HAWC sensitivity to a subset of these
sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the
Galactic center. We simulate the HAWC response to gamma rays from these sources
in several well-motivated dark matter annihilation channels. If no gamma-ray
excess is observed, we show the limits HAWC can place on the dark matter
cross-section from these sources. In particular, in the case of dark matter
annihilation into gauge bosons, HAWC will be able to detect a narrow range of
dark matter masses to cross-sections below thermal. HAWC should also be
sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The
constraints placed by HAWC on the dark matter cross-section from known sources
should be competitive with current limits in the mass range where HAWC has
similar sensitivity. HAWC can additionally explore higher dark matter masses
than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR
Disentangling signatures of selection before and after European colonization in latin Americans
Throughout human evolutionary history, large-scale migrations have led to intermixing (i.e., admixture) between previously separated human groups. Although classical and recent work have shown that studying admixture can yield novel historical insights, the extent to which this process contributed to adaptation remains underexplored. Here, we introduce a novel statistical model, specific to admixed populations, that identifies loci under selection while determining whether the selection likely occurred post-admixture or prior to admixture in one of the ancestral source populations. Through extensive simulations, we show that this method is able to detect selection, even in recently formed admixed populations, and to accurately differentiate between selection occurring in the ancestral or admixed population. We apply this method to genome-wide SNP data of ∼4,000 individuals in five admixed Latin American cohorts from Brazil, Chile, Colombia, Mexico, and Peru. Our approach replicates previous reports of selection in the human leukocyte antigen region that are consistent with selection post-admixture. We also report novel signals of selection in genomic regions spanning 47 genes, reinforcing many of these signals with an alternative, commonly used local-ancestry-inference approach. These signals include several genes involved in immunity, which may reflect responses to endemic pathogens of the Americas and to the challenge of infectious disease brought by European contact. In addition, some of the strongest signals inferred to be under selection in the Native American ancestral groups of modern Latin Americans overlap with genes implicated in energy metabolism phenotypes, plausibly reflecting adaptations to novel dietary sources available in the Americas
Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons
© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio
Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF
The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards
- …