4 research outputs found

    Comparison of Solanum dulcamara transcriptome after real and simulated herbivory

    Full text link
    Plants are attacked by diverse herbivores and respond with manifold defense responses. To study transcriptional and other early regulation events of these plant responses, herbivory is often mimicked to standardize the temporal and spatial dynamics that vary tremendously for natural herbivory. Yet to what extent such mimics of herbivory are able to elicit the same plant response as real herbivory remains largely undetermined. We examined the transcriptional response of a new model plant to herbivory by a lepidopteran larva and to a commonly used herbivory mimic by applying the larvae’s oral secretions to standardized wounds. We designed a microarray for Solanum dulcamara and showed that the transcriptional response to real and to simulated herbivory by Spodoptera exigua overlapped moderately by about 40%. Interestingly, certain responses were mimicked better than others; 60% of the genes up-regulated but not even a quarter of the genes down-regulated by herbivory were similarly affected by application of oral secretions to wounds. While the regulation of genes involved in signaling, defense and water stress were mirrored well by the herbivory mimic, most of the genes related to photosynthesis, carbohydrate- and lipid metabolism were exclusively regulated by real herbivory. Thus, wounding and elicitor application decently mimics herbivory-induced defense responses but likely not the re-allocation of primary metabolites induced by real herbivory. Overall design Four treatment groups were analyzed in S. dulcamara clones from different locations (Siethen, Erkner, Grunewald, and Mehrow, all in the vicinity of Berlin, Germany). Leaves were either undamaged controls (control), fed upon by S. exigua (spodo) caterpillars for 24 h or damaged with a pattern wheel and treated with S. exigua oral secretions (w+os) and harvested either after 1 h or 24 h

    Induced deactivation of genes encoding chlorophyll biosynthesis enzymes disentangles tetrapyrrole-mediated retrograde signalling.

    Full text link
    In photosynthetic organisms, tetrapyrrole-mediated retrograde signals are proposed to contribute to a balanced nuclear gene expression (NGE) in response to metabolic activity in chloroplasts. We followed an experimental short-term approach that allowed the assessment of modified NGE during the first hours of specifically modified enzymatic steps of the Mg branch of tetrapyrrole biosynthesis, when pleiotropic effects of other signals can be avoided. In response to 24 h-induced silencing of CHLH, CHLM and CHL27 encoding the CHLH subunit of Mg chelatase, the Mg protoporphyrin methyltransferase and Mg protoporphyrin monomethylester cyclase, respectively, deactivated gene expression rapidly led to reduced activity of the corresponding enzymes and altered Mg porphyrin levels. But NGE was not substantially altered. When these three genes were continuously inactivated for up to 4 days, changes of transcript levels of nuclear genes were determined. CHL27 silencing for more than 24 h results in necrotic leaf lesions and modulated transcript levels of oxidative stress-responsive and photosynthesis-associated nuclear genes (PhANGs). The prolonged deactivation of CHLH and CHLM results in slightly elevated transcript levels of PhANGs and tetrapyrrole-associated genes. These time-resolved studies indicate a complex scenario for the contribution of tetrapyrrole biosynthesis on NGE mediated by (1)O2-induced signalling and feedback-regulated ALA synthesis
    corecore