5 research outputs found

    Human Cytomegalovirus Impairs the Function of Plasmacytoid Dendritic Cells in Lymphoid Organs

    Get PDF
    Human dendritic cells (DCs) are the main antigen presenting cells (APC) and can be divided into two main populations, myeloid and plasmacytoid DCs (pDCs), the latter being the main producers of Type I Interferon. The vast majority of pDCs can be found in lymphoid organs, where the main pool of all immune cells is located, but a minority of pDCs also circulate in peripheral blood. Human cytomegalovirus (HCMV) employs multiple mechanisms to evade the immune system. In this study, we could show that pDCs obtained from lymphoid organs (tonsils) (tpDCs) and from blood (bpDCs) are different subpopulations in humans. Interestingly, these populations react in opposite manner to HCMV-infection. TpDCs were fully permissive for HCMV. Their IFN-Ξ± production and the expression of costimulatory and adhesion molecules were altered after infection. In contrast, in bpDCs HCMV replication was abrogated and the cells were activated with increased IFN-Ξ± production and upregulation of MHC class I, costimulatory, and adhesion molecules. HCMV-infection of both, tpDCs and bpDCs, led to a decreased T cell stimulation, probably mediated through a soluble factor produced by HCMV-infected pDCs. We propose that the HCMV-mediated impairment of tpDCs is a newly discovered mechanism selectively targeting the host's major population of pDCs residing in lymphoid organs

    Identification and functional analysis of sequence variants in the long control region and the E2 open reading frame of bovine papillomavirus type 1 isolated from equine sarcoids

    Get PDF
    AbstractBPV-1 DNA is the predominant viral type detected in equine sarcoids and represents the only reported natural cross species infection of papillomaviruses. In this study, nucleotide variations in the LCR and the E2 regions of equine sarcoid-associated BPV-1 were characterised by sequence analysis. Variants particular to sarcoid BPV-1 were identified in both the LCR and E2 sequence. The functionality of the most common LCR variant was examined in equine and bovine cells. These studies showed that the activity of the variant LCR was higher in equine cells than bovine cells; the activity of the variant LCR in the presence of the E2 variant was similar to the reference/wild-type sequences in equine cells, whereas in bovine cells the variant function was reduced by 50%. These data suggest the viral BPV variants commonly detected in sarcoids have an enhanced function in equine cells compared to their function in bovine cells
    corecore