776 research outputs found
On the Spatial Correlations of Lyman Break Galaxies
Motivated by the observed discrepancy between the strong spatial correlations
of Lyman break galaxies (LBGs) and their velocity dispersions, we consider a
theoretical model in which these starbursting galaxies are associated with dark
matter halos that experience appreciable infall of material. We show using
numerical simulation that selecting halos that substantially increase in mass
within a fixed time interval introduces a ``temporal bias'' which boosts their
clustering above that of the underlying population. If time intervals
consistent with the observed LBGs star formation rates of 50 solar masses per
year are chosen, then spatial correlations are enhanced by up to a factor of
two. These values roughly correspond to the geometrical bias of objects three
times as massive. Thus, it is clear that temporal biasing must be taken into
account when interpreting the properties of Lyman break galaxies.Comment: 5 Pages, 2 Figures, Accepted for Publication in ApJ Letter
Forming Clusters of Galaxies as the Origin of Unidentified GeV Gamma-Ray Sources
Over half of GeV gamma-ray sources observed by the EGRET experiment have not
yet been identified as known astronomical objects. There is an isotropic
component of such unidentified sources, whose number is about 60 in the whole
sky. Here we calculate the expected number of dynamically forming clusters of
galaxies emitting gamma-rays by high energy electrons accelerated in the shock
wave when they form, in the framework of the standard theory of structure
formation. We find that a few tens of such forming clusters should be
detectable by EGRET and hence a considerable fraction of the isotropic
unidentified sources can be accounted for, if about 5% of the shock energy is
going into electron acceleration. We argue that these clusters are very
difficult to detect in x-ray or optical surveys compared with the conventional
clusters, because of their extended angular size of about 1 degree. Hence they
define a new population of ``gamma-ray clusters''. If this hypothesis is true,
the next generation gamma-ray telescopes such as GLAST will detect more than a
few thousands of gamma-ray clusters. It would provide a new tracer of
dynamically evolving structures in the universe, in contrast to the x-ray
clusters as a tracer of hydrodynamically stabilized systems. We also derive the
strength of magnetic field required for the extragalactic gamma-ray background
by structure formation to extend up to 100 GeV as observed, that is about
10^{-5} of the shock-heated baryon energy density.Comment: Accepted by ApJ after minor revisions. Received May 9, Accepted
August 3. 8 pages including 2 figure
Diffuse gamma-ray background and cosmic-ray positrons from annihilating dark matter
We study the annihilating dark matter contribution to the extra-galactic
diffuse gamma-ray background spectrum, motivated by the recent observations of
cosmic-ray positron/electron anomalies. The observed diffuse gamma-ray flux
provides stringent constraint on dark matter models and we present upper bounds
on the annihilation cross section of the dark matter. It is found that for the
case of cored dark matter halo profile, the diffuse gamma-rays give more
stringent bound compared with gamma-rays from the Galactic center. The Fermi
satellite will make the bound stronger.Comment: 20 pages, 11 figures; references added; to appear in PR
Cosmological Implications of the Fundamental Relations of X-ray Clusters
Based on the two-parameter family nature of X-ray clusters of galaxies
obtained in a separate paper, we discuss the formation history of clusters and
cosmological parameters of the universe. Utilizing the spherical collapse model
of cluster formation, and assuming that the cluster X-ray core radius is
proportional to the virial radius at the time of the cluster collapse, the
observed relations among the density, radius, and temperature of clusters imply
that cluster formation occurs in a wide range of redshift. The observed
relations favor the low-density universe. Moreover, we find that the model of
is preferable.Comment: 7 pages, 4 figures. To be published in ApJ Letter
Confronting cold dark matter cosmologies with strong clustering of Lyman break galaxies at
We perform a detailed analysis of the statistical significance of a
concentration of Lyman break galaxies at recently discovered by
Steidel et al. (1997), using a series of N-body simulations with
particles in a (100\himpc)^3 comoving box. While the observed number density
of Lyman break galaxies at implies that they correspond to systems
with dark matter halos of \simlt 10^{12}M_\odot, the resulting clustering of
such objects on average is not strong enough to be reconciled with the
concentration if it is fairly common; we predict one similar concentration
approximately per () fields in three representative cold dark matter
models. Considering the current observational uncertainty of the frequency of
such clustering at , it would be premature to rule out the models, but
the future spectroscopic surveys in a dozen fields could definitely challenge
all the existing cosmological models a posteriori fitted to the universe.Comment: the final version which matchs that published in ApJ Letters (Feb
1998); compared with the previous versions, the predictions for the SCDM
model are slightly changed; Latex, 11 pages, including 3 ps figure
Dwarf Dark Matter Halos
We study properties of dark matter halos at high redshifts z=2-10 for a vast
range of masses with the emphasis on dwarf halos with masses 10^7-10^9 Msun/h.
We find that the density profiles of relaxed dwarf halos are well fitted by the
NFW profile and do not have cores. We compute the halo mass function and the
halo spin parameter distribution and find that the former is very well
reproduced by the Sheth & Tormen model while the latter is well fitted by a
lognormal distribution with lambda_0 = 0.042 and sigma_lambda = 0.63. We
estimate the distribution of concentrations for halos in mass range that covers
six orders of magnitude from 10^7 Msun/h to 10^13} Msun/h, and find that the
data are well reproduced by the model of Bullock et al. The extrapolation of
our results to z = 0 predicts that present-day isolated dwarf halos should have
a very large median concentration of ~ 35. We measure the subhalo circular
velocity functions for halos with masses that range from 4.6 x 10^9 Msun/h to
10^13 Msun/h and find that they are similar when normalized to the circular
velocity of the parent halo. Dwarf halos studied in this paper are many orders
of magnitude smaller than well-studied cluster- and Milky Way-sized halos. Yet,
in all respects the dwarfs are just down-scaled versions of the large halos.
They are cuspy and, as expected, more concentrated. They have the same spin
parameter distribution and follow the same mass function that was measured for
large halos.Comment: Accepted to be pusblished by ApJ, 12 pages, 8 figures, LaTeX
(documentclass preprint2). Differences with respect to the previous
submission are: (i) abstract was modified slightly to make it more
transparent to the reader, (ii) an extra figure has been added, and (3) some
minor modifications to the main text were also don
Heating of the IGM
Using the cosmic virial theorem, Press-Schechter analysis and numerical
simulations, we compute the expected X-ray background (XRB) from the diffuse
IGM with the clumping factor expected from gravitational shock heating. The
predicted fluxes and temperatures are excluded from the observed XRB. The
predicted clumping can be reduced by entropy injection. The required energy is
computed from the two-point correlation function, as well as from
Press-Schechter formalisms. The minimal energy injection of 1 keV/nucleon
excludes radiative or gravitational heating as a primary energy source. We
argue that the intergalactic medium (IGM) must have been heated through violent
processes such as massive supernova bursts. If the heating proceeded through
supernova explosions, it likely proceeded in bursts which may be observable in
high redshift supernova searches. Within our model we reproduce the observed
cluster luminosity-temperature relation with energy injection of 1 keV/nucleon
if this injection is assumed to be uncorrelated with the local density. These
parameters predict that the diffuse IGM soft XRB has a temperature of ~1 keV
with a flux near 10 keV/cm^2 s str keV, which may be detectable in the near
future.Comment: to appear in ApJ Lett., 11 pages incl 1 figur
A Test of the Collisional Dark Matter Hypothesis from Cluster Lensing
Spergel & Steinhardt proposed the possibility that the dark matter particles
are self-interacting, as a solution to two discrepancies between the
predictions of cold dark matter models and the observations: first, the
observed dark matter distribution in some dwarf galaxies has large,
constant-density cores, as opposed to the predicted central cusps; and second,
small satellites of normal galaxies are much less abundant than predicted. The
dark matter self-interaction would produce isothermal cores in halos, and would
also expel the dark matter particles from dwarfs orbiting within large halos.
However, another inevitable consequence of the model is that halos should
become spherical once most particles have interacted. Here, I rule out this
model by the fact that the innermost regions of dark matter halos in massive
clusters of galaxies are elliptical, as shown by gravitational lensing and
other observations. The absence of collisions in the lensing cores of massive
clusters implies that any dark matter self-interaction is too weak to have
affected the observed density profiles in the dark-matter dominated dwarf
galaxies, or to have eased the destruction of dwarf satellites in galactic
halos. If is the cross section and the mass of the dark matter
particle, then s_x/m_x < 10^{-25.5} \cm^2/\gev.Comment: to appear in ApJ, January 1 200
Triggering the Formation of Halo Globular Clusters with Galaxy Outflows
We investigate the interactions of high-redshift galaxy outflows with
low-mass virialized (Tvir < 10,000K) clouds of primordial composition. While
atomic cooling allows star formation in larger primordial objects, such
"minihalos" are generally unable to form stars by themselves. However, the
large population of high-redshift starburst galaxies may have induced
widespread star formation in these objects, via shocks that caused intense
cooling both through nonequilibrium H2 formation and metal-line emission. Using
a simple analytic model, we show that the resulting star clusters naturally
reproduce three key features of the observed population of halo globular
clusters (GCs). First, the 10,000 K maximum virial temperature corresponds to
the ~ 10^6 solar mass upper limit on the stellar mass of GCs. Secondly, the
momentum imparted in such interactions is sufficient to strip the gas from its
associated dark matter halo, explaining why GCs do not reside in dark matter
potential wells. Finally, the mixing of ejected metals into the primordial gas
is able to explain the ~ 0.1 dex homogeneity of stellar metallicities within a
given GC, while at the same time allowing for a large spread in metallicity
between different clusters. To study this possibility in detail, we use a
simple 1D numerical model of turbulence transport to simulate mixing in
cloud-outflow interactions. We find that as the shock shears across the side of
the cloud, Kelvin-Helmholtz instabilities arise, which cause mixing of enriched
material into > 20% of the cloud. Such estimates ignore the likely presence of
large-scale vortices, however, which would further enhance turbulence
generation. Thus quantitative mixing predictions must await more detailed
numerical studies.Comment: 21 pages, 11 figures, Apj in pres
- âŠ