4,014 research outputs found
Characterization of a Second Bovine Rotavirus Serotype
Bovine rotavirus (BRV) V 1005 was characterized by two-way cross-neutralization tests as a second serotype of BRV. Virions and inner shell particles of 65 nm and 55 nm diameter respectively, and empty capsids of 65 nm and 55 nm diameter were separated by density gradient centrifugation. Three polypeptides of molecular weight 60,000, 36,000 and 28,000 (minor protein) could be identified in the outer shell of virions and in the larger empty capsids. Inner shell particles contained three polypeptides of molecular weight 105,000, 83,000 and 43,000. Both sizes of empty capsids showed two polypeptides of molecular weight 75,000 and 55,000 not found in virions. Pulse-labelling of infected cells revealed eight major and three minor intracellular viral polypeptides. Viral polypeptide synthesis started at about 6 hours p.i. and correlated in time with double-stranded RNA synthesis. As soon as viral polypeptide synthesis was detectable, newly synthesized viral polypeptides were incorporated into intracellular viral particles. Radioactive viral polypeptides appeared without a longer lag period in extracellular viruses from 6 hours p.i. onward
The H\"older-Poincar\'e Duality for -cohomology
We prove the following version of Poincare duality for reduced
-cohomology: For any , the -cohomology of a
Riemannian manifold is in duality with the interior 1/p+1/p'=11/q+1/q'=1$.Comment: 21 page
Thermocurrents and their Role in high Q Cavity Performance
Over the past years it became evident that the quality factor of a
superconducting cavity is not only determined by its surface preparation
procedure, but is also influenced by the way the cavity is cooled down.
Moreover, different data sets exists, some of them indicate that a slow
cool-down through the critical temperature is favourable while other data
states the exact opposite. Even so there where speculations and some models
about the role of thermo-currents and flux-pinning, the difference in behaviour
remained a mystery. In this paper we will for the first time present a
consistent theoretical model which we confirmed by data that describes the role
of thermo-currents, driven by temperature gradients and material transitions.
We will clearly show how they impact the quality factor of a cavity, discuss
our findings, relate it to findings at other labs and develop mitigation
strategies which especially addresses the issue of achieving high quality
factors of so-called nitrogen doped cavities in horizontal test
Self-assembly of melem on Ag(111)—emergence of porous structures based on amino-heptazine hydrogen bonds
Self-assembly of melem on Ag(111) as studied by Scanning-Tunneling-Microscopy (STM) in ultra-high vacuum revealed a great structural variety. In total, five porous and two densely packed monolayer polymorphs were observed. All structures are stabilized by intermolecular hydrogen bonds, where melem–melem arrangements are based on very few basic motifs. Six out of seven polymorphs can be described by a unified concept
Greater Expectations?
Physically Unclonable Functions (PUFs) are key tools in the construction of lightweight authentication and key exchange protocols. So far, all existing PUF-based authentication protocols follow the same paradigm: A resource-constrained prover, holding a PUF, wants to authenticate to a resource-rich verifier, who has access to a database of pre-measured PUF challenge-response pairs (CRPs). In this paper we consider application scenarios where all previous PUF-based authentication schemes fail to work: The verifier is resource-constrained (and holds a PUF), while the prover is resource-rich (and holds a CRP-database). We construct the first and efficient PUF-based authentication protocol for this setting, which we call converse PUF-based authentication. We provide an extensive security analysis against passive adversaries, show that a minor modification also allows for authenticated key exchange and propose a concrete instantiation using controlled Arbiter PUFs
Renormalization group scale-setting from the action - a road to modified gravity theories
The renormalization group (RG) corrected gravitational action in
Einstein-Hilbert and other truncations is considered. The running scale of the
renormalization group is treated as a scalar field at the level of the action
and determined in a scale-setting procedure recently introduced by Koch and
Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is
elaborated for other truncations of the gravitational action and applied to
several phenomenologically interesting cases. It is shown how the logarithmic
dependence of the Newton's coupling on the RG scale leads to exponentially
suppressed effective cosmological constant and how the scale-setting in
particular RG corrected gravitational theories yields the effective
modified gravity theories with negative powers of the Ricci scalar . The
scale-setting at the level of the action at the non-gaussian fixed point in
Einstein-Hilbert and more general truncations is shown to lead to universal
effective action quadratic in Ricci tensor.Comment: v1: 15 pages; v2: shortened to 10 pages, main results unchanged,
published in Class. Quant. Gra
Macroporous Composite Cryogels with Embedded Polystyrene Divinylbenzene Microparticles for the Adsorption of Toxic Metabolites from Blood
Composite monolithic adsorbents were prepared by the incorporation of neutral polystyrene divinylbenzene (PS-DVB) microparticles into macroporous polymer structures produced by cryogelation of agarose or poly(vinyl alcohol). The composite
materials exhibited excellent flow-through properties. Scanning electron microscopy of the composite cryogels revealed that the microparticles were covered by thin films of poly(vinyl alcohol) or agarose and thus were withheld in the monolith structure. Plain PS-DVB microparticles showed efficient adsorption of albumin-bound toxins related to liver failure (bilirubin and cholic acid) and of cytokines (tumor necrosis factor-alpha and interleukin-6). The rates of adsorption and the amount of adsorbed factors were lower for the embedded microparticles as compared to the parent PS-DVB microparticles, indicating the importance of the accessibility of the adsorbent pores. Still, the macroporous composite materials showed efficient adsorption of albuminbound
toxins related to liver failure as well as efficient binding of cytokines, combined with good blood compatibility. Thus, the incorporation of microparticles into macroporous polymer structures may provide an option for the development of adsorption modules for extracorporeal blood purification
Leading Order Temporal Asymptotics of the Modified Non-Linear Schrodinger Equation: Solitonless Sector
Using the matrix Riemann-Hilbert factorisation approach for non-linear
evolution equations (NLEEs) integrable in the sense of the inverse scattering
method, we obtain, in the solitonless sector, the leading-order asymptotics as
tends to plus and minus infinity of the solution to the Cauchy
initial-value problem for the modified non-linear Schrodinger equation: also
obtained are analogous results for two gauge-equivalent NLEEs; in particular,
the derivative non-linear Schrodinger equation.Comment: 29 pages, 5 figures, LaTeX, revised version of the original
submission, to be published in Inverse Problem
- …