2,231 research outputs found
Limiting Case of Modified Electroweak Model for Contracted Gauge Group
The modification of the Electroweak Model with 3-dimensional spherical
geometry in the matter fields space is suggested. The Lagrangian of this model
is given by the sum of the {\it free} (without any potential term) matter
fields Lagrangian and the standard gauge fields Lagrangian. The vector boson
masses are generated by transformation of this Lagrangian from Cartesian
coordinates to a coordinates on the sphere . The limiting case of the
bosonic part of the modified model, which corresponds to the contracted gauge
group is discussed. Within framework of the limit model
Z-boson and electromagnetic fields can be regarded as an external ones with
respect to W-bosons fields in the sence that W-boson fields do not effect on
these external fields. The masses of all particles of the Electroweak Model
remain the same, but field interactions in contracted model are more simple as
compared with the standard Electroweak Model.Comment: 12 pages, talk given at the XIII Int. Conf. on SYMMETRY METHODS IN
PHYSICS, Dubna, Russia, July 6-9, 2009; added references for introduction,
clarified motivatio
Higgsless Electroweak Model and Contraction of Gauge Group
A modified formulation of the Electroweak Model with 3-dimensional spherical
geometry in the target space is suggested. The {\it free} Lagrangian in the
spherical field space along with the standard gauge field Lagrangian form the
full Higgsless Lagrangian of the model, whose second order terms reproduce the
same experimentally verified fields with the same masses as the Standard
Electroweak Model. The vector bosons masses are automatically generated, so
there is no need in special mechanism of spontaneous symmetry breaking.
The limiting case of the modified Higgsless Electroweak Model, which
corresponds to the contracted gauge group is discussed.
Within framework of the limit model Z-boson, electromagnetic and electron
fields are interpreted as an external ones with respect to W-bosons and
neutrino fields. The W-bosons and neutrino fields do not effect on these
external fields. The masses of all particles remain the same, but the field
interactions in contracted model are more simple as compared with the standard
Electroweak Model due to nullification of some terms.Comment: Talk at the International Workshop "`Supersymmetries and Quantum
Symmetries"' (SQS-09), Dubna, Russia, July 29 -- August 3, 2009, 11
Noncommutative space-time models
The FRT quantum Euclidean spaces are formulated in terms of Cartesian
generators. The quantum analogs of N-dimensional Cayley-Klein spaces are
obtained by contractions and analytical continuations. Noncommutative constant
curvature spaces are introduced as a spheres in the quantum Cayley-Klein
spaces. For N=5 part of them are interpreted as the noncommutative analogs of
(1+3) space-time models. As a result the quantum (anti) de Sitter, Newton,
Galilei kinematics with the fundamental length and the fundamental time are
suggested.Comment: 8 pages; talk given at XIV International Colloquium of Integrable
Systems, Prague, June 16-18, 200
Cayley--Klein Contractions of Quantum Orthogonal Groups in Cartesian Basis
Spaces of constant curvature and their motion groups are described most
naturally in Cartesian basis. All these motion groups also known as CK groups
are obtained from orthogonal group by contractions and analytical
continuations. On the other hand quantum deformation of orthogonal group is most easily performed in so-called symplectic basis. We reformulate its
standard quantum deformation to Cartesian basis and obtain all possible
contractions of quantum orthogonal group both for untouched and
transformed deformation parameter. It turned out, that similar to undeformed
case all CK contractions of are realized. An algorithm for obtaining
nonequivalent (as Hopf algebra) contracted quantum groups is suggested.
Contractions of are regarded as an examples.Comment: The statement of the basic theorem have correct. 30 pages, Latex.
Report given at X International Conference on Symmetry Methods in Physics,
August 13-19, 2003, Yerevan, Armenia. Submitted in Journal Physics of Atomic
Nucle
Possible contractions of quantum orthogonal groups
Possible contractions of quantum orthogonal groups which correspond to
different choices of primitive elements of Hopf algebra are considered and all
allowed contractions in Cayley--Klein scheme are obtained. Quantum deformations
of kinematical groups have been investigated and have shown that quantum analog
of (complex) Galilei group G(1,3) do not exist in our scheme.Comment: 10 pages, Latex. Report given at XXIII Int. Colloquium on Group
Theoretical Methods in Physics, July 31- August 5, 2000, Dubna (Russia
On contractions of classical basic superalgebras
We define a class of orthosymplectic and unitary
superalgebras which may be obtained from and
by contractions and analytic continuations in a similar way as the
special linear, orthogonal and the symplectic Cayley-Klein algebras are
obtained from the corresponding classical ones. Casimir operators of
Cayley-Klein superalgebras are obtained from the corresponding operators of the
basic superalgebras. Contractions of and are regarded as
an examples.Comment: 15 pages, Late
On the Fermionic Frequencies of Circular Strings
We revisit the semiclassical computation of the fluctuation spectrum around
different circular string solutions in AdS_5xS^5 and AdS_4xCP^3, starting from
the Green-Schwarz action. It has been known that the results for these
frequencies obtained from the algebraic curve and from the worldsheet
computations sometimes do not agree. In particular, different methods give
different results for the half-integer shifts in the mode numbers of the
frequencies. We find that these discrepancies can be removed if one carefully
takes into account the transition matrices in the spin bundle over the target
space.Comment: 13 pages, 1 figur
- …