55 research outputs found

    Introduction to Khovanov Homologies. III. A new and simple tensor-algebra construction of Khovanov-Rozansky invariants

    Full text link
    We continue to develop the tensor-algebra approach to knot polynomials with the goal to present the story in elementary and comprehensible form. The previously reviewed description of Khovanov cohomologies for the gauge group of rank N-1=1 was based on the cut-and-join calculus of the planar cycles, which are involved rather artificially. We substitute them by alternative and natural set of cycles, not obligatory planar. Then the whole construction is straightforwardly lifted from SL(2) to SL(N) and reproduces Khovanov-Rozansky (KR) polynomials, simultaneously for all values of N. No matrix factorization and related tedious calculations are needed in such approach, which can therefore become not only conceptually, but also practically useful.Comment: 66 page

    A-infinity structure on simplicial complexes

    Full text link
    A discrete (finite-difference) analogue of differential forms is considered, defined on simplicial complexes, including triangulations of continuous manifolds. Various operations are explicitly defined on these forms, including exterior derivative and exterior product. The latter one is non-associative. Instead, as anticipated, it is a part of non-trivial A-infinity structure, involving a chain of poly-linear operations, constrained by nilpotency relation: (d + \wedge + m + ...)^n = 0 with n=2.Comment: final version. 29 page

    On the shapes of elementary domains or why Mandelbrot Set is made from almost ideal circles?

    Get PDF
    Direct look at the celebrated "chaotic" Mandelbrot Set in Fig..\ref{Mand2} immediately reveals that it is a collection of almost ideal circles and cardioids, unified in a specific {\it forest} structure. In /hep-th/9501235 a systematic algebro-geometric approach was developed to the study of generic Mandelbrot sets, but emergency of nearly ideal circles in the special case of the family x2+cx^2+c was not fully explained. In the present paper the shape of the elementary constituents of Mandelbrot Set is explicitly {\it calculated}, and difference between the shapes of {\it root} and {\it descendant} domains (cardioids and circles respectively) is explained. Such qualitative difference persists for all other Mandelbrot sets: descendant domains always have one less cusp than the root ones. Details of the phase transition between different Mandelbrot sets are explicitly demonstrated, including overlaps between elementary domains and dynamics of attraction/repulsion regions. Explicit examples of 3-dimensional sections of Universal Mandelbrot Set are given. Also a systematic small-size approximation is developed for evaluation of various Feigenbaum indices.Comment: 65 pages, 30 figure
    • …
    corecore