11 research outputs found

    Magnetoresistance Effects in SrFeO(3-x): Dependence on Phase Composition and Relation to Magnetic and Charge Order

    Full text link
    Single crystals of iron(IV) rich oxides SrFeO(3-x) with controlled oxygen content have been studied by Moessbauer spectroscopy, magnetometry, magnetotransport measurements, Raman spectroscopy, and infrared ellipsometry in order to relate the large magnetoresistance (MR) effects in this system to phase composition, magnetic and charge order. It is shown that three different types of MR effects occur. In cubic SrFeO3 (x = 0) a large negative MR of 25% at 9 T is associated with a hitherto unknown 60 K magnetic transition and a subsequent drop in resistivity. The 60 K transition appears in addition to the onset of helical ordering at ~130 K. In crystals with vacancy-ordered tetragonal SrFeO(3-x) as majority phase (x ~0.15) a coincident charge/antiferromagnetic ordering transition near 70 K gives rise to a negative giant MR effect of 90% at 9 T. A positive MR effect is observed in tetragonal and orthorhombic materials with increased oxygen deficiency (x = 0.19, 0.23) which are insulating at low temperatures. Phase mixtures can result in a complex superposition of these different MR phenomena. The MR effects in SrFeO(3-x) differ from those in manganites as no ferromagnetic states are involved

    Frequency and orientation dependent conductivity of a semi-Dirac system

    Full text link
    The intra- and interband optical conductivities of a semi-Dirac system are determined. It was found that the conductivity in the linear direction is considerably stronger than the conductivity in the parabolic direction. For an electrical field applied along a non-principal axis, both the the longitudinal and transverse current are nonzero. Due to the anisotropy of the system, the transverse conductivity for an oblique applied field can exceed the longitudinal conductivity

    Raman scattering study of Ru(Sr,La)2GdCu2O8

    Full text link
    corecore