521 research outputs found
Effect of Intra-molecular Disorder and Inter-molecular Electronic Interactions on the Electronic Structure of Poly-p-Phenylene Vinylene (PPV)
We investigate the role of intra-molecular conformational disorder and
inter-molecular electronic interactions on the electronic structure of disorder
clusters of poly-p-phenylene vinylene (PPV) oligomers. Classical molecular
dynamics is used to determine probable molecular geometries, and
first-principle density functional theory (DFT) calculations are used to
determine electronic structure. Intra-molecular and inter-molecular effects are
disentangled by contrasting results for densely packed oligomer clusters with
those for ensembles of isolated oligomers with the same intra-molecular
geometries. We find that electron trap states are induced primarily by
intra-molecular configuration disorder, while the hole trap states are
generated primarily from inter-molecular electronic interactions.Comment: 4 pages, 4 figures. Compile with pdflate
Strong Suppression of Thermal Conductivity in the Presence of Long Terminal Alkyl Chains in Low-Disorder Molecular Semiconductors
While the charge transport properties of organic semiconductors have been extensively studied over the recent years, the field of organics-based thermoelectrics is still limited by a lack of experimental data on thermal transport and of understanding of the associated structureâproperty relationships. To fill this gap, a comprehensive experimental and theoretical investigation of the lattice thermal conductivity in polycrystalline thin films of dinaphtho[2,3-b:2â˛,3â˛-f]thieno[3,2-b]thiophene (Cn-DNTT-Cn with n = 0, 8) semiconductors is reported. Strikingly, thermal conductivity appears to be much more isotropic than charge transport, which is confined to the 2D molecular layers. A direct comparison between experimental measurements (3ĎâVĂślklein method) and theoretical estimations (approach-to-equilibrium molecular dynamics (AEMD) method) indicates that the in-plane thermal conductivity is strongly reduced in the presence of the long terminal alkyl chains. This evolution can be rationalized by the strong localization of the intermolecular vibrational modes in C8-DNTT-C8 in comparison to unsubstituted DNTT cores, as evidenced by a vibrational mode analysis. Combined with the enhanced charge transport properties of alkylated DNTT systems, this opens the possibility to decouple electron and phonon transport in these materials, which provides great potential for enhancing the thermoelectric figure of merit ZT
Recommended from our members
In Situ Xâray Scattering Reveals Coarsening Rates of Superlattices Self-Assembled from Electrostatically Stabilized Metal Nanocrystals Depend Nonmonotonically on Driving Force
Self-assembly of colloidal nanocrystals (NCs) into superlattices (SLs) is an appealing strategy to design hierarchically organized materials with promising functionalities. Mechanistic studies are still needed to uncover the design principles for SL self-assembly, but such studies have been difficult to perform due to the fast time and short length scales of NC systems. To address this challenge, we developed an apparatus to directly measure the evolving phases in situ and in real time of an electrostatically stabilized Au NC solution before, during, and after it is quenched to form SLs using small-angle X-ray scattering. By developing a quantitative model, we fit the time-dependent scattering patterns to obtain the phase diagram of the system and the kinetics of the colloidal and SL phases as a function of varying quench conditions. The extracted phase diagram is consistent with particles whose interactions are short in range relative to their diameter. We find the degree of SL order is primarily determined by fast (subsecond) initial nucleation and growth kinetics, while coarsening at later times depends nonmonotonically on the driving force for self-assembly. We validate these results by direct comparison with simulations and use them to suggest dynamic design principles to optimize the crystallinity within a finite time window. The combination of this measurement methodology, quantitative analysis, and simulation should be generalizable to elucidate and better control the microscopic self-assembly pathways of a wide range of bottom-up assembled systems and architectures
Interplay Between Mixed and Pure Exciton States Controls Singlet Fission in Rubrene Single Crystals
Singlet fission (SF) is a multielectron process in which one singlet exciton
S converts into a pair of triplet excitons T+T. SF is widely studied as it may
help overcome the Shockley-Queisser efficiency limit for semiconductor
photovoltaic cells. To elucidate and control the SF mechanism, great attention
has been given to the identification of intermediate states in SF materials,
which often appear elusive due to the complexity and fast timescales of the SF
process. Here, we apply 10fs-1ms transient absorption techniques to high-purity
rubrene single crystals to disentangle the intrinsic fission dynamics from the
effects of defects and grain boundaries and to identify reliably the fission
intermediates. We show that above-gap excitation directly generates a hybrid
vibronically assisted mixture of singlet state and triplet-pair multiexciton
[S:TT], which rapidly (<100fs) and coherently branches into pure singlet or
triplet excitations. The relaxation of [S:TT] to S is followed by a relatively
slow and temperature-activated (48 meV activation energy) incoherent fission
process. The SF competing pathways and intermediates revealed here unify the
observations and models presented in previous studies of SF in rubrene and
propose alternative strategies for the development of SF-enhanced photovoltaic
materials
Limiting factors for charge generation in low-offset fullerene-based organic solar cells
Free charge generation after photoexcitation of donor or acceptor molecules in organic solar cells generally proceeds via (1) formation of charge transfer states and (2) their dissociation into charge separated states. Research often either focuses on the first component or the combined effect of both processes. Here, we provide evidence that charge transfer state dissociation rather than formation presents a major bottleneck for free charge generation in fullerene-based blends with low energetic offsets between singlet and charge transfer states. We investigate devices based on dilute donor content blends of (fluorinated) ZnPc:C60 and perform density functional theory calculations, device characterization, transient absorption spectroscopy and time-resolved electron paramagnetic resonance measurements. We draw a comprehensive picture of how energies and transitions between singlet, charge transfer, and charge separated states change upon ZnPc fluorination. We find that a significant reduction in photocurrent can be attributed to increasingly inefficient charge transfer state dissociation. With this, our work highlights potential reasons why low offset fullerene systems do not show the high performance of non-fullerene acceptors
On the Munn-Silbey approach to polaron transport with off-diagonal coupling
Improved results using a method similar to the Munn-Silbey approach have been
obtained on the temperature dependence of transport properties of an extended
Holstein model incorporating simultaneous diagonal and off-diagonal
exciton-phonon coupling. The Hamiltonian is partially diagonalized by a
canonical transformation, and optimal transformation coefficients are
determined in a self-consistent manner. Calculated transport properties exhibit
substantial corrections on those obtained previously by Munn and Silbey for a
wide range of temperatures thanks to a numerically exact evaluation and an
added momentum-dependence of the transformation matrix. Results on the
diffusion coefficient in the moderate and weak coupling regime show distinct
band-like and hopping-like transport features as a function of temperature.Comment: 12 pages, 6 figures, accpeted in Journal of Physical Chemistry B:
Shaul Mukamel Festschrift (2011
Chargeâ Transport Properties of F6TNAPâ Based Chargeâ Transfer Cocrystals
The crystal structures of the chargeâ transfer (CT) cocrystals formed by the à â electron acceptor 1,3,4,5,7,8â hexafluoroâ 11,11,12,12â tetracyanonaphthoâ 2,6â quinodimethane (F6TNAP) with the planar à â electronâ donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3â d]thiophene (BTBT), benzo[1,2â b:4,5â bâ ²]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using singleâ crystal Xâ ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixedâ stacking motifs. Cocrystals based on BTBT and CBZ à â electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringboneâ type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of groundâ state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TPâ , BDTâ , and PYâ based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Chargeâ carrier mobility values are obtained from spaceâ charge limited current (SCLC) measurements and fieldâ effect transistor measurements, with values exceeding 1 cm2 Vâ 1 s1 being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.Structural, electronic band structure, and electrical properties of a series of chargeâ transfer cocrystals based on F6TNAP and six planar donors are presented. Density functional theory calculations afford large conduction bandwidths and low effective masses for all six cocrystals. A few cocrystals exhibit chargeâ carrier mobilities in excess of 1 cm2 Vâ 1 sâ 1, as estimated from spaceâ charge limited current measurements.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/1/adfm201904858-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/2/adfm201904858.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/3/adfm201904858_am.pd
Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation
The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.United States. Dept. of Energy. Office of Basic Energy Sciences (DE-FG02-07ER46454)United States. Dept. of Energy. Office of Basic Energy Sciences (DE-SC0001088)National Institutes of Health (U.S.) (9P41EB015871-26A1
A model for the dynamics and internal structure of planar doping fronts in organic semiconductors
The dynamics and internal structure of doping fronts in organic
semiconductors are investigated theoretically using an extended drift-diffusion
model for ions, electrons and holes. The model also involves the injection
barriers for electrons and holes in the partially doped regions in the form of
the Nernst equation, together with a strong dependence of the electron and hole
mobility on concentrations. Closed expressions for the front velocities and the
ion concentrations in the doped regions are obtained. The analytical theory is
employed to describe the acceleration of the p- and n-fronts towards each
other. The analytical results show very good agreement with the experimental
data. Furthermore, it is shown that the internal structure of the doping fronts
is determined by the diffusion and mobility processes. The asymptotic behavior
of the concentrations and the electric field is studied analytically inside the
doping fronts. The numerical solution for the front structure confirms the most
important predictions of the analytical theory: a sharp head of the front in
the undoped region, a smooth relaxation tail in the doped region, and a plateau
at the critical point of transition from doped to undoped regions.Comment: 13 pages, 11 figure
Freezing-in orientational disorder induces crossover from thermally-activated to temperature-independent transport in organic semiconductors
The crystalline structure of organic materials dictates their physical properties, but while significant research effort is geared towards understanding structure-property relationships in such materials, the details remain unclear. Many organic crystals exhibit transitions in their electrical properties as a function of temperature. One example is the 1:1 charge-transfer complex trans--stilbene-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane. Here we show that the mobility and resistivity of this material undergo a transition from being thermally activated at temperatures above 235 K to being temperature independent at low temperatures. On the basis of our experimental and theoretical results, we attribute this behaviour to the presence of a glass-like transition and the accompanied freezing-in of orientational disorder of the stilbene molecule
- âŚ