9 research outputs found
Suppressing the and neutrino masses by a superconformal force
The idea of Nelson and Strassler to obtain a power law suppression of
parameters by a superconformal force is applied to understand the smallness of
the parameter and neutrino masses in R-parity violating supersymmetric
standard models. We find that the low-energy sector should contain at least
another pair of Higgs doublets, and that a suppression of \lsim O(10^{-13})
for the parameter and neutrino masses can be achieved generically. The
superpotential of the low-energy sector happens to possess an anomaly-free
discrete R-symmetry, either or , which naturally suppresses certain
lepton-flavor violating processes, the neutrinoless double beta decays and also
the electron electric dipole moment. We expect that the escape energy of the
superconformal sector is \lsim O(10) TeV so that this sector will be
observable at LHC. Our models can accommodate to a large mixing among neutrinos
and give the same upper bound of the lightest Higgs mass as the minimal
supersymmetric standard model.Comment: 24 page
Sensory Evaluation of Pralines Containing Different Honey Products
In this study, pralines manufactured by hand were evaluated sensorially. These pralines were obtained from dark chocolate containing 60% cocoa components, filled with Apis mellifera carnica Poll drone larvae, blossom honey and a blossom honey/pollen mixture from the protected region of Stara Planina-Eastern Serbia (a specific botanical region). The objectives of this study were investigations related to the use of sensory analysis for quality assessment of new functional products with potential benefits for human health, in particular of desserts based on dark chocolate pralines filled with different bee products characterized by a specific botanical and geographic origin, as well as of their storage properties and expected shelf life. Sensory quality (appearance, texture, odor and taste were evaluated by a group of experienced panelists immediately after the production (day 0), and then after 30, 90 and 180 days of storage under ambient conditions (temperature 18â20 °C). The results were statistically analyzed by the two-factorial analysis of variance (MANOVA) and with the LSD-test. It is possible to conclude that the storage time and composition of dark chocolate pralines containing different honey-bee products have statistically highly significant (p < 0.01) influence on the sensorially evaluated properties of pralines