13 research outputs found

    Pharmacokinetic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients

    Get PDF
    This study aims at establishing relationships between genetic and non-genetic factors of variation of the pharmacokinetics of irinotecan and its metabolites; and also at establishing relationships between the pharmacokinetic or metabolic parameters and the efficacy and toxicity of irinotecan. We included 49 patients treated for metastatic colorectal cancer with a combination of 5-fluorouracil and irinotecan; a polymorphism in the UGT1A1 gene (TA repeat in the TATA box) and one in the CES2 gene promoter (830C>G) were studied as potential markers for SN-38 glucuronidation and irinotecan activation, respectively; and the potential activity of CYP3A4 was estimated from cortisol biotransformation into 6β-hydroxycortisol. No pharmacokinetic parameter was directly predictive of clinical outcome or toxicity. The AUCs of three important metabolites of irinotecan, SN-38, SN-38 glucuronide and APC, were tentatively correlated with patients' pretreatment biological parameters related to drug metabolism (plasma creatinine, bilirubin and liver enzymes, and blood leukocytes). SN-38 AUC was significantly correlated with blood leukocytes number and SN-38G AUC was significantly correlated with plasma creatinine, whereas APC AUC was significantly correlated with plasma liver enzymes. The relative extent of irinotecan activation was inversely correlated with SN-38 glucuronidation. The TATA box polymorphism of UGT1A1 was significantly associated with plasma bilirubin levels and behaved as a significant predictor for neutropoenia. The level of cortisol 6β-hydroxylation predicted for the occurrence of diarrhoea. All these observations may improve the routine use of irinotecan in colorectal cancer patients. UGT1A1 genotyping plus cortisol 6β-hydroxylation determination could help to determine the optimal dose of irinotecan

    Do pharmacokinetic polymorphisms explain treatment failure in high-risk patients with neuroblastoma?

    Full text link

    Pharmacogenetics of irinotecan: carboxylesterase 2

    No full text
    corecore