40 research outputs found

    Schwinger-boson approach to quantum spin systems: Gaussian fluctuactions in the "natural" gauge

    Full text link
    We compute the Gaussian-fluctuation corrections to the saddle-point Schwinger-boson results using collective coordinate methods. Concrete application to investigate the frustrated J1-J2 antiferromagnet on the square lattice shows that, unlike the saddle-point predictions, there is a quantum nonmagnetic phase for 0.53 < J2/J1 < 0.64. This result is obtained by considering the corrections to the spin stiffness on large lattices and extrapolating to the thermodynamic limit, which avoids the infinite-lattice infrared divergencies associated to Bose condensation. The very good agreement of our results with exact numerical values on finite clusters lends support to the calculational scheme employed.Comment: 4 pages, Latex, 3 figures included as eps files,minor correction

    Spin Dynamics of the Triangular Heisenberg Antiferromagnet: A Schwinger Boson Approach

    Full text link
    We have analyzed the two-dimensional antiferromagnetic Heisenberg model on the triangular lattice using a Schwinger boson mean-field theory. By expanding around a state with local 120120^\circ order, we obtain, in the limit of infinite spin, results for the excitation spectrum in complete agreement with linear spin wave theory (LSWT). In contrast to LSWT, however, the modes at the ordering wave vectors acquire a mass for finite spin. We discuss the origin of this effect.Comment: 15 pages REVTEX 3.0 preprint, 6 postscript figures ( uuencoded and compressed using the script uufiles ) are submitted separately

    Nuclear Magnetic Relaxation in the Ferrimagnetic Chain Compound NiCu(C_7_H_6_N_2_O_6_)(H_2_O)_3_2H_2_O: Three-Magnon Scattering?

    Full text link
    Recent proton spin-lattice relaxation-time (T_1_) measurements on the ferrimagnetic chain compound NiCu(C_7_H_6_N_2_O_6_)(H_2_O)_3_2H_2_O are explained by an elaborately modified spin-wave theory. We give a strong evidence of the major contribution to 1/T_1_ being made by the three-magnon scattering rather than the Raman one.Comment: J. Phys.: Condens. Matter 16, No. 49, 9023 (2004

    Kondo resonances and Fano antiresonances in transport through quantum dots

    Full text link
    The transmission of electrons through a non-interacting tight-binding chain with an interacting side quantum dot (QD) is analized. When the Kondo effect develops at the dot the conductance presents a wide minimum, reaching zero at the unitary limit. This result is compared to the opposite behaviour found in an embedded QD. Application of a magnetic field destroys the Kondo effect and the conductance shows pairs of dips separated by the charging energy U. The results are discussed in terms of Fano antiresonances and explain qualitatively recent experimental results.Comment: 4 pages including 4 figure

    Rotational invariance and order-parameter stiffness in frustrated quantum spin systems

    Full text link
    We compute, within the Schwinger-boson scheme, the Gaussian-fluctuation corrections to the order-parameter stiffness of two frustrated quantum spin systems: the triangular-lattice Heisenberg antiferromagnet and the J1-J2 model on the square lattice. For the triangular-lattice Heisenberg antiferromagnet we found that the corrections weaken the stiffness, but the ground state of the system remains ordered in the classical 120 spiral pattern. In the case of the J1-J2 model, with increasing frustration the stiffness is reduced until it vanishes, leaving a small window 0.53 < J2/J1 < 0.64 where the system has no long-range magnetic order. In addition, we discuss several methodological questions related to the Schwinger-boson approach. In particular, we show that the consideration of finite clusters which require twisted boundary conditions to fit the infinite-lattice magnetic order avoids the use of ad hoc factors to correct the Schwinger-boson predictions.Comment: 9 pages, Latex, 6 figures as ps files, fig.1 changed and minor text corrections, to appear in Phys.Rev.

    Modified spin-wave theory of nuclear magnetic relaxation in one-dimensional quantum ferrimagnets: Three-magnon versus Raman processes

    Full text link
    Nuclear spin-lattice relaxation in one-dimensional Heisenberg ferrimagnets is studied by means of a modified spin-wave theory. Calculating beyond the first-order mechanism, where a nuclear spin directly interacts with spin waves through the hyperfine coupling, we demonstrate that the exchange-scattering-enhanced three-magnon nuclear relaxation may generally predominate over the Raman one with increasing temperature and decreasing field. Recent proton spin-lattice relaxation-time (T_1_) measurements on the ferrimagnetic chain compound NiCu(C_7_H_6_N_2_O_6_)(H_2_O)_3_2H_2_O suggest that the major contribution to 1/T_1_ be made by the three-magnon scattering.Comment: 8 pages, 5 figure

    Spin-Wave Description of Haldane-gap antiferromagnets

    Full text link
    Modifying the conventional antiferromagnetic spin-wave theory which is plagued by the difficulty of the zero-field sublattice magnetizations diverging in one dimension, we describe magnetic properties of Haldane-gap antiferromagnets. The modified spin waves, constituting a grand canonical bosonic ensemble so as to recover the sublattice symmetry, not only depict well the ground-state correlations but also give useful information on the finite-temperature properties.Comment: to be published in J. Phys. Soc. Jpn. Vol. 72, No. 4 (2003
    corecore