611 research outputs found

    Coronal heating in multiple magnetic threads

    Get PDF
    Context. Heating the solar corona to several million degrees requires the conversion of magnetic energy into thermal energy. In this paper, we investigate whether an unstable magnetic thread within a coronal loop can destabilise a neighbouring magnetic thread. Aims. By running a series of simulations, we aim to understand under what conditions the destabilisation of a single magnetic thread can also trigger a release of energy in a nearby thread. Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate the temporal evolution of coronal magnetic fields during a kink instability and the subsequent relaxation process. We assume that a coronal magnetic loop consists of non-potential magnetic threads that are initially in an equilibrium state. Results. The non-linear kink instability in one magnetic thread forms a helical current sheet and initiates magnetic reconnection. The current sheet fragments, and magnetic energy is released throughout that thread. We find that, under certain conditions, this event can destabilise a nearby thread, which is a necessary requirement for starting an avalanche of energy release in magnetic threads. Conclusions. It is possible to initiate an energy release in a nearby, non-potential magnetic thread, because the energy released from one unstable magnetic thread can trigger energy release in nearby threads, provided that the nearby structures are close to marginal stability

    Particle acceleration in a reconnecting current sheet: PIC simulation

    Full text link
    The acceleration of protons and electrons in a reconnecting current sheet (RCS) is simulated with a particle-in-cell (PIC) 2D3V code for the proton-to-electron mass ratio of 100. The electro-magnetic configuration forming the RCS incorporates all three components of the magnetic field (including the guiding field) and a drifted electric field. PIC simulations reveal that there is a polarisation electric field that appears during acceleration owing to a separation of electrons from protons towards the midplane of the RCS. If the plasma density is low, the polarisation field is weak and the particle trajectories in the PIC simulations are similar to those in the test particle (TP) approach. For the higher plasma density the polarisation field is stronger and it affects the trajectories of protons by increasing their orbits during acceleration. This field also leads to a less asymmetrical abundances of ejected protons towards the midplane in comparison with the TP approach. For a given magnetic topology electrons in PIC simulations are ejected to the same semispace as protons, contrary to the TP results. This happens because the polarisation field extends far beyond the thickness of a current sheet. This field decelerates the electrons, which are initially ejected into the semispace opposite to the protons, returns them back to the RCS, and, eventually, leads to the electron ejection into the same semispace as protons. Energy distribution of the ejected electrons is rather wide and single-peak, contrary to the two-peak narrow-energy distribution obtained in the TP approach. In the case of a strong guiding field, the mean energy of the ejected electrons is found to be smaller than it is predicted analytically and by the TP simulations.Comment: 12 pages, 11 figures, J. Plasma Physics (accepted

    Structures in the outer solar atmosphere

    Get PDF
    The structure and dynamics of the outer solar atmosphere are reviewed with emphasis on the role played by the magnetic field. Contemporary observations that focus on high resolution imaging over a range of temperatures, as well as UV, EUV and hard X-ray spectroscopy, demonstrate the presence of a vast range of temporal and spatial scales, mass motions, and particle energies present. By focussing on recent developments in the chromosphere, corona and solar wind, it is shown that small scale processes, in particular magnetic reconnection, play a central role in determining the large-scale structure and properties of all regions. This coupling of scales is central to understanding the atmosphere, yet poses formidable challenges for theoretical models.Comment: 41 Pages, 15 Figures, Accepted for publication in Space Science Review

    Fast magnetoacoustic waves in curved coronal loops. I, Trapped and leaky modes

    Get PDF
    A study of vertically polarised fast magnetoacoustic waves in a curved coronal loop is presented. The loop is modeled as a semi-circular magnetic slab in the zero plasma-β limit. The governing equations for linear waves are derived. We show that the wave mode behaviour depends on the slope of the equilibrium density profile, which is modeled as a piece-wise continuous power law curve of index α. For all profiles, except for α = −4, wave modes are not trapped in the loop and leak out into the external medium through wave tunneling. The particular case of α = −4, which corresponds to a linearly increasing Alfvén speed profile, is examined in more detail as this is the only model that can support trapped wave modes. We compare the results with a straight slab model and find similar behaviour. Coupling between sausage and kink wave modes has not been found in the model

    Propagation of an Earth-directed coronal mass ejection in three dimensions

    Full text link
    Solar coronal mass ejections (CMEs) are the most significant drivers of adverse space weather at Earth, but the physics governing their propagation through the heliosphere is not well understood. While stereoscopic imaging of CMEs with the Solar Terrestrial Relations Observatory (STEREO) has provided some insight into their three-dimensional (3D) propagation, the mechanisms governing their evolution remain unclear due to difficulties in reconstructing their true 3D structure. Here we use a new elliptical tie-pointing technique to reconstruct a full CME front in 3D, enabling us to quantify its deflected trajectory from high latitudes along the ecliptic, and measure its increasing angular width and propagation from 2-46 solar radii (approximately 0.2 AU). Beyond 7 solar radii, we show that its motion is determined by an aerodynamic drag in the solar wind and, using our reconstruction as input for a 3D magnetohydrodynamic simulation, we determine an accurate arrival time at the Lagrangian L1 point near Earth.Comment: 5 figures, 2 supplementary movie

    Coronal mass ejections as expanding force-free structures

    Full text link
    We mode Solar coronal mass ejections (CMEs) as expanding force-fee magnetic structures and find the self-similar dynamics of configurations with spatially constant \alpha, where {\bf J} =\alpha {\bf B}, in spherical and cylindrical geometries, expanding spheromaks and expanding Lundquist fields correspondingly. The field structures remain force-free, under the conventional non-relativistic assumption that the dynamical effects of the inductive electric fields can be neglected. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, induced by inductive electric field. The structures depends only on overall radius R(t) and rate of expansion \dot{R}(t) measured at a given moment, and thus are applicable to arbitrary expansion laws. In case of cylindrical Lundquist fields, the flux conservation requires that both axial and radial expansion proceed with equal rates. In accordance with observations, the model predicts that the maximum magnetic field is reached before the spacecraft reaches the geometric center of a CME.Comment: 19 pages, 9 Figures, accepted by Solar Physic

    Dynamics and Radiation of Young Type-Ia Supernova Remnants: Important Physical Processes

    Full text link
    We examine and analyze the physical processes that should be taken into account when modeling young type-Ia SNRs, with ages of several hundred years. It is shown, that energy losses in the metal-rich ejecta can be essential for remnants already at this stage of evolution. The influence of electron thermal conduction and the rate of the energy exchange between electrons and ions on the temperature distribution and the X-radiation from such remnants is studied. The data for Tycho SNR from the XMM-Newton X-ray telescope have been employed for the comparison of calculations with observations.Comment: 19 pages, 8 figure

    High resolution soft x-ray spectroscopy and the quest for the hot (5-10 MK) plasma in solar active regions

    Get PDF
    We discuss the diagnostics available to study the 5-10 MK plasma in the solar corona, which is key to understanding the heating in the cores of solar active regions. We present several simulated spectra, and show that excellent diagnostics are available in the soft X-rays, around 100 Angstroms, as six ionisation stages of Fe can simultaneously be observed, and electron densities derived, within a narrow spectral region. As this spectral range is almost unexplored, we present an analysis of available and simulated spectra, to compare the hot emission with the cooler component. We adopt recently designed multilayers to present estimates of count rates in the hot lines, with a baseline spectrometer design. Excellent count rates are found, opening up the exciting opportunity to obtain high-resolution spectroscopy of hot plasma

    Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare

    Full text link
    A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.Comment: 26 pages, 9 figures, accepted to Solar Physic
    corecore