3,622 research outputs found

    Screening of Coulomb interactions in transition metals

    Full text link
    We discuss different methods of calculation of the screened Coulomb interaction UU in transition metals and compare the constraint local-density approximation (LDA) with the GW approach. We clarify that they offer complementary methods of treating the screening and should serve for different purposes. In the GW method, the renormalization of bare on-site Coulomb interactions between 3d electrons occurs mainly through the screening by the same 3d electrons, treated in the random phase approximation (RPA). The basic difference of the constraint-LDA method is that it deals with the neutral processes, where the Coulomb interactions are additionally screened by the ``excited'' electron, since it continues to stay in the system. This is the main channel of screening by the itinerant (4sp4sp) electrons, which is especially strong in the case of transition metals and missing in the GW approach, although the details of this screening may be affected by additional approximations, which typically supplement these two methods. The major drawback of the conventional constraint-LDA method is that it does not allow to treat the energy-dependence of UU. We propose a promising approximation based on the combination of these two methods. First, we take into account the screening of Coulomb interactions in the 3d-electron-line bands located near the Fermi level by the states from the subspace being orthogonal to these bands, using the constraint-LDA methods. The obtained interactions are further renormalized within the bands near the Fermi level in RPA. This allows the energy-dependent screening by electrons near the Fermi level including the same 3d electrons.Comment: 25 pages, 5 figures, 2 table

    Lattice Distortion and Magnetism of 3d-t2gt_{2g} Perovskite Oxides

    Full text link
    Several puzzling aspects of interplay of the experimental lattice distortion and the the magnetic properties of four narrow t2gt_{2g}-band perovskite oxides (YTiO3_3, LaTiO3_3, YVO3_3, and LaVO3_3) are clarified using results of first-principles electronic structure calculations. First, we derive parameters of the effective Hubbard-type Hamiltonian for the isolated t2gt_{2g} bands using newly developed downfolding method for the kinetic-energy part and a hybrid approach, based on the combination of the random-phase approximation and the constraint local-density approximation, for the screened Coulomb interaction part. Then, we solve the obtained Hamiltonian using a number of techniques, including the mean-field Hartree-Fock (HF) approximation, the second-order perturbation theory for the correlation energy, and a variational superexchange theory. Even though the crystal-field splitting is not particularly large to quench the orbital degrees of freedom, the crystal distortion imposes a severe constraint on the form of the possible orbital states, which favor the formation of the experimentally observed magnetic structures in YTiO3_3, YVO_, and LaVO3_3 even at the HF level. Beyond the HF approximation, the correlations effects systematically improve the agreement with the experimental data. Using the same type of approximations we could not reproduce the correct magnetic ground state of LaTiO3_3. However, we expect that the situation may change by systematically improving the level of approximations for dealing with the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available via e-mai

    First-principle Wannier functions and effective lattice fermion models for narrow-band compounds

    Full text link
    We propose a systematic procedure for constructing effective lattice fermion models for narrow-band compounds on the basis of first-principles electronic structure calculations. The method is illustrated for the series of transition-metal (TM) oxides: SrVO3_3, YTiO3_3, V2_2O3_3, and Y2_2Mo2_2O7_7. It consists of three parts, starting from LDA. (i) construction of the kinetic energy Hamiltonian using downfolding method. (ii) solution of an inverse problem and construction of the Wannier functions (WFs) for the given kinetic energy Hamiltonian. (iii) calculation of screened Coulomb interactions in the basis of \textit{auxiliary} WFs, for which the kinetic-energy term is set to be zero. The last step is necessary in order to avoid the double counting of the kinetic-energy term, which is included explicitly into the model. The screened Coulomb interactions are calculated in a hybrid scheme. First, we evaluate the screening caused by the change of occupation numbers and the relaxation of the LMTO basis functions, using the conventional constraint-LDA approach, where all matrix elements of hybridization involving the TM dd orbitals are set to be zero. Then, we switch on the hybridization and evaluate the screening associated with the change of this hybridization in RPA. The second channel of screening is very important, and results in a relatively small value of the effective Coulomb interaction for isolated t2gt_{2g} bands. We discuss details of this screening and consider its band-filling dependence, frequency dependence, influence of the lattice distortion, proximity of other bands, and the dimensionality of the model Hamiltonian.Comment: 35 pages, 25 figure

    Fingerprints of Spin-Orbital Physics in Crystalline O2_2

    Full text link
    The alkali hyperoxide KO2_2 is a molecular analog of strongly-correlated systems, comprising of orbitally degenerate magnetic O2−_2^- ions. Using first-principles electronic structure calculations, we set up an effective spin-orbital model for the low-energy \textit{molecular} orbitals and argue that many anomalous properties of KO2_2 replicate the status of its orbital system in various temperature regimes.Comment: 4 pages, 2 figures, 1 tabl

    Construction of Wannier functions from localized atomic-like orbitals

    Full text link
    The problem of construction of the Wannier functions (WFs) in a restricted Hilbert space of eigenstates of the one-electron Hamiltonian H^\hat{H} (forming the so-called low-energy part of the spectrum) can be formulated in several different ways. One possibility is to use the projector-operator techniques, which pick up a set of trial atomic orbitals and project them onto the given Hilbert space. Another possibility is to employ the downfolding method, which eliminates the high-energy part of the spectrum and incorporates all related to it properties into the energy-dependence of an effective Hamiltonian. We show that by modifying the high-energy part of the spectrum of the original Hamiltonian H^\hat{H}, which is rather irrelevant to the construction of WFs in the low-energy part of the spectrum, these two methods can be formulated in an absolutely exact and identical form, so that the main difference between them is reduced to the choice of the trial orbitals. Concerning the latter part of the problem, we argue that an optimal choice for trial orbitals can be based on the maximization of the site-diagonal part of the density matrix. The main idea is illustrated for a simple toy model, consisting of only two bands, as well as for a more realistic example of t2gt_{2g} bands in V2_2O3_3. An analogy with the search of the ground state of a many-electron system is also discussed.Comment: 13 pages, 6 figure

    Lattice Distortion and Magnetic Ground State of YTiO3_3 and LaTiO3_3

    Full text link
    Effects of lattice distortion on the magnetic ground state of YTiO3_3 and LaiO3_3 are investigated on the basis accurate tight-binding parametrization of the t2gt_{2g} electronic structure extracted from the local-density approximation. The complexity of these compounds is related with the fact that the t2gt_{2g}-level splitting, caused by lattice distortions, is comparable with the energies of superexchange and spin-orbit interactions. Therefore, all these interactions are equally important and should be treated on an equal footing. The Hartree-Fock approximation fails to provide a coherent description simultaneously for YTiO3_3 and LaTiO3_3, and it is essential to go beyond.Comment: 4 pages, 3 figures (good quality figures are available via e-mail

    Ferromagnetic zigzag chains and properties of the charge ordered perovskite manganites

    Full text link
    The low-temperature properties of the so-called ''charge ordered'' state in 50% doped perovskite manganites are described from the viewpoint of the magnetic spin ordering. In these systems, the zigzag antiferromagnetic ordering, combined with the double-exchange physics, effectively divides the whole sample into the one-dimensional ferromagnetic zigzag chains and results in the anisotropy of electronic properties. The electronic structure of one such chain is described by an effective 3×\times3 Hamiltonian in the basis of Mn(3deg3de_g) orbitals. We treat this problem analytically and consider the following properties: (i) the nearest-neighbor magnetic interactions; (ii) the distribution of the Mn(3deg3de_g) and Mn(4p4p) states near the Fermi level, and their contribution to the optical conductivity and the resonant x-ray scattering near the Mn KK-absorption edge. We argue that the anisotropy of magnetic interactions in the double-exchange limit, combined with the isotropic superexchange interactions, readily explains both the local and the global stability of the zigzag antiferromagnetic state. The two-fold degeneracy of ege_g levels plays a very important role in the problem and explains the insulating behavior of the zigzag chain, as well as the appearance of the orbital ordering in the double-exchange model. Importantly, however, the charge ordering itself is expected to play only a minor role and is incompatible with the ferromagnetic coupling within the chain. We also discuss possible effects of the Jahn-Teller distortion and compare the tight-binding picture with results of band structure calculations in the local-spin-density approximation.Comment: 35 pages, 8 figure

    Superexchange Interactions in Orthorhombically Distorted Titanates RTiO3 (R= Y, Gd, Sm, and La)

    Full text link
    Starting from the multiorbital Hubbard model for the t2g-bands of RTiO3 (R= Y, Gd, Sm, and La), where all parameters have been derived from the first-principles calculations, we construct an effective superexchange (SE) spin model, by treating transfer integrals as a perturbation. We consider four approximations for the SE interactions: (i) the canonical crystal-field (CF) theory, where the form of the the occupied t2g-orbitals is dictated by the CF splitting, and three extensions, namely (ii) the relativistic one, where occupied orbitals are confined within the lowest Kramers doublet obtained from the diagonalization of the crystal field and relativistic spin-orbit (SO) interactions; (iii) the finite-temperature extension, which consider the effect of thermal orbital fluctuations near the CF configuration; (iv) the many-electron extension, which is based on the diagonalization of the full Hamiltonian constructed in the basis of two-electron states separately for each bond of the system. The main results are summarized as follows. (i) Thermal fluctuations of the orbital degrees of freedom can substantially reduce the value of the magnetic transition temperature. (ii) The anisotropic and antisymmetric Dzyaloshinsky-Moriya interactions are rigorously derived and their implications to the magnetic properties are discussed. (iii) The CF theory, although applicable for YTiO3 and high-temperature structures of GdTiO3 and SmTiO3, breaks down in LaTiO3. Instead, the combination of the many-electron effects and SO interaction can be responsible for the AFM character of interatomic correlations in LaTiO3. (iv) The SE interactions in YTiO3 strongly depend on the details of the crystal structure. Distortions in the low-temperature structure tend to weaken the ferromagnetic interactions.Comment: 23 pages, 9 tables, 4 figure

    Long-Range Magnetic Interactions Induced by the Lattice Distortions and the Origin of the E-type Antiferromagnetic Phase in the Undoped Orthorhombic Manganites

    Full text link
    With the increase of the lattice distortion, the orthorhombic manganites RRMnO3_3 (RR== La, Pr, Nd, Tb, and Ho) are known to undergo the phase transition from the layered A-type antiferromagnetic (AFM) state to the zigzag E-type AFM state. We consider the microscopic origin of this transition. Our approach consists of the two parts. First, we construct an effective lattice fermion model for the manganese 3d-bands and derive parameters of this model from the first-principles electronic structure calculations. Then, we solve this model in the Hartree-Fock approximation (HFA) and analyze the behavior of interatomic magnetic interactions. We argue that the nearest-neighbor interactions decrease with the distortion and at certain stage start to compete with the longer range (particularly, second- and third-neighbor) AFM interactions in the orthorhombic ab-plane, which lead to the formation of the E-phase. The origin of these interactions is closely related to the orbital ordering, which takes place in the distorted orthorhombic structure. The model is able to capture the experimental trend and explain why LaMnO3_3 develops the A-type AFM order and why it tends to transform to the E-type AFM order in the more distorted compounds. Nevertheless, the quantitative agreement with the experimental data crucially depends on other factors, such as the magnetic polarization of the oxygen sites and the correlation interactions beyond HFA.Comment: 26 pages, 15 figure
    • …
    corecore