1,002 research outputs found

    Size-dependent Surface States on Strained Cobalt Nanoislands on Cu(111)

    Full text link
    Low-temperature scanning tunneling spectroscopy over Co nanoislands on Cu(111) showed that the surface states of the islands vary with their size. Occupied states exhibit a sizeable downward energy shift as the island size decreases. The position of the occupied states also significantly changes across the islands. Atomic-scale simulations and ab inito calculations demonstrate that the driving force for the observed shift is related to size-dependent mesoscopic relaxations in the nanoislands.Comment: 4 pages, 4 figure

    Transport properties and the anisotropy of Ba_{1-x}K_xFe_2As_2 single crystals in normal and superconducting states

    Get PDF
    The transport and superconducting properties of Ba_{1-x}K_xFe_2As_2 single crystals with T_c = 31 K were studied. Both in-plane and out-of plane resistivity was measured by modified Montgomery method. The in-plane resistivity for all studied samples, obtained in the course of the same synthesis, is almost the same, unlike to the out-of plane resistivity, which differ considerably. We have found that the resistivity anisotropy \gamma=\rho_c /\rho_{ab} is almost temperature independent and lies in the range 10-30 for different samples. This, probably, indicates on the extrinsic nature of high out-of-plane resistivity, which may appear due to the presence of the flat defects along Fe-As layers in the samples. This statement is supported by comparatively small effective mass anisotropy, obtained from the upper critical field measurements, and from the observation of the so-called "Friedel transition", which indicates on the existence of some disorder in the samples in c-direction.Comment: 5 pages, 5 figure

    Lattice Distortion and Magnetism of 3d-t2gt_{2g} Perovskite Oxides

    Full text link
    Several puzzling aspects of interplay of the experimental lattice distortion and the the magnetic properties of four narrow t2gt_{2g}-band perovskite oxides (YTiO3_3, LaTiO3_3, YVO3_3, and LaVO3_3) are clarified using results of first-principles electronic structure calculations. First, we derive parameters of the effective Hubbard-type Hamiltonian for the isolated t2gt_{2g} bands using newly developed downfolding method for the kinetic-energy part and a hybrid approach, based on the combination of the random-phase approximation and the constraint local-density approximation, for the screened Coulomb interaction part. Then, we solve the obtained Hamiltonian using a number of techniques, including the mean-field Hartree-Fock (HF) approximation, the second-order perturbation theory for the correlation energy, and a variational superexchange theory. Even though the crystal-field splitting is not particularly large to quench the orbital degrees of freedom, the crystal distortion imposes a severe constraint on the form of the possible orbital states, which favor the formation of the experimentally observed magnetic structures in YTiO3_3, YVO_, and LaVO3_3 even at the HF level. Beyond the HF approximation, the correlations effects systematically improve the agreement with the experimental data. Using the same type of approximations we could not reproduce the correct magnetic ground state of LaTiO3_3. However, we expect that the situation may change by systematically improving the level of approximations for dealing with the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available via e-mai

    Disclinations, dislocations and continuous defects: a reappraisal

    Full text link
    Disclinations, first observed in mesomorphic phases, are relevant to a number of ill-ordered condensed matter media, with continuous symmetries or frustrated order. They also appear in polycrystals at the edges of grain boundaries. They are of limited interest in solid single crystals, where, owing to their large elastic stresses, they mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, change of shape, involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye's dislocation densities, well suited here. The notion of 'extended Volterra process' takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by applications in amorphous solids, mesomorphic phases and frustrated media in their curved habit space. The powerful topological theory of line defects only considers defects stable against relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, well suited for media of high plasticity or/and complex structures. Topological stability cannot guarantee energetic stability and sometimes cannot distinguish finer details of structure of defects.Comment: 72 pages, 36 figure

    Zero-temperature generalized phase diagram of the 4d transition metals under pressure

    Full text link
    We use an accurate implementation of density functional theory (DFT) to calculate the zero-temperature generalized phase diagram of the 4dd series of transition metals from Y to Pd as a function of pressure PP and atomic number ZZ. The implementation used is full-potential linearized augmented plane waves (FP-LAPW), and we employ the exchange-correlation functional recently developed by Wu and Cohen. For each element, we obtain the ground-state energy for several crystal structures over a range of volumes, the energy being converged with respect to all technical parameters to within 1\sim 1 meV/atom. The calculated transition pressures for all the elements and all transitions we have found are compared with experiment wherever possible, and we discuss the origin of the significant discrepancies. Agreement with experiment for the zero-temperature equation of state is generally excellent. The generalized phase diagram of the 4dd series shows that the major boundaries slope towards lower ZZ with increasing PP for the early elements, as expected from the pressure induced transfer of electrons from spsp states to dd states, but are almost independent of PP for the later elements. Our results for Mo indicate a transition from bcc to fcc, rather than the bcc-hcp transition expected from spsp-dd transfer.Comment: 28 pages and 10 figures. Submitted to Phys. Rev.

    Magnetic tight-binding and the iron-chromium enthalpy anomaly

    Full text link
    We describe a self consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non spin polarised reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to the Stoner--Slater rigid band model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe which we compare with results using the local spin density approximation. The rigid band model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.Comment: Submitted to Phys Rev

    Resonance in One--Dimensional Fermi--Edge Singularity

    Full text link
    The problem of the Fermi--edge singularity in a one--dimensional Tomonaga--Luttinger liquid is reconsidered. The backward scattering of the conduction band electrons on the impurity--like hole in the valence band is analyzed by mapping the problem onto a Coulomb gas theory. For the case when the electron--electron interaction is repulsive the obtained exponent of the one--dimensional Fermi--edge singularity appears to be different from the exponent found in the previous studies. It is shown that the infrared physics of the Fermi--edge singularity in the presence of backward scattering and electron--electron repulsion resembles the physics of the Kondo problem.Comment: 38 pages and 1 figure, to be published in PR

    Scattering theory on graphs (2): the Friedel sum rule

    Full text link
    We consider the Friedel sum rule in the context of the scattering theory for the Schr\"odinger operator -\Dc_x^2+V(x) on graphs made of one-dimensional wires connected to external leads. We generalize the Smith formula for graphs. We give several examples of graphs where the state counting method given by the Friedel sum rule is not working. The reason for the failure of the Friedel sum rule to count the states is the existence of states localized in the graph and not coupled to the leads, which occurs if the spectrum is degenerate and the number of leads too small.Comment: 20 pages, LaTeX, 6 eps figure

    Transport Coefficients of the Anderson Model via the Numerical Renormalization Group

    Full text link
    The transport coefficients of the Anderson model are calculated by extending Wilson's NRG method to finite temperature Green's functions. Accurate results for the frequency and temperature dependence of the single--particle spectral densities and transport time τ(ω,T)\tau(\omega,T) are obtained and used to extract the temperature dependence of the transport coefficients in the strong correlation limit. The low temperature anomalies in the resistivity, ρ(T)\rho(T), thermopower, S(T)S(T), thermal conductivity κ(T)\kappa(T) and Hall coefficient, RH(T)R_{H}(T), are discussed. All quantities exhibit the expected Fermi liquid behaviour at low temperature with power law dependecies on T/TKT/T_{K} in very good agreement with analytic results based on Fermi liquid theory. Scattering of conduction electrons in higher, l>0l>0, angular momentum channels is also considered and an expression is derived for the corresponding transport time and used to discuss the influence of non--resonant scattering on the transport properties.Comment: 45 pages, RevTeX, 28 figures, available on reques

    PathOrganic – Risks and Recommendations Regarding Human Pathogens in Organic Vegetable Production Chains

    Get PDF
    PathOrganic assesses risks associated with the consumption of fresh and minimally processed vegetables due to the prevalence of bacterial human pathogens in plant produce. The project evaluates whether organic production poses a risk on food safety, taking into consideration sources of pathogen transmission (e.g. animal manure). The project also explores whether organic versus conventional production practices may reduce the risk of pathogen manifestation. In Europe, vegetable-linked outbreaks are not well investigated. A conceptual model together with novel sampling strategies and specifically adjusted methods provides the basis for large-scale surveys of organically grown plant produce in five European countries. Critical control points are determined and evaluated and factors contributing to a food safety problem are analyzed in greenhouse and field experiments. The project aims at developing a quantitative risk assessment model and at formulating recommendations for improving food safety in organic vegetable production
    corecore