834 research outputs found

    Atomic States Entanglement in Carbon Nanotubes

    Full text link
    The entanglement of two atoms (ions) doped into a carbon nanotube has been investigated theoretically. Based on the photon Green function formalism for quantizing electromagnetic field in the presence of carbon nanotubes, small-diameter metallic nanotubes are shown to result in a high degree of the two-qubit atomic entanglement for long times due to the strong atom-field coupling.Comment: 4 pages, 2 figure

    Near-field Electrodynamics of Atomically Doped Carbon Nanotubes

    Full text link
    We develop a quantum theory of near-field electrodynamical properties of carbon nanotubes and investigate spontaneous decay dynamics of excited states and van der Waals attraction of the ground state of an atomic system close to a single-wall nanotube surface. Atomic spontaneous decay exhibits vacuum-field Rabi oscillations -- a principal signature of strong atom-vacuum-field coupling. The strongly coupled atomic state is nothing but a 'quasi-1D cavity polariton'. Its stability is mainly determined by the atom-nanotube van der Waals interaction. Our calculations of the ground-state atom van der Waals energy performed within a universal quantum mechanical approach valid for both weak and strong atom-field coupling demonstrate the inapplicability of conventional weak-coupling-based van der Waals interaction models in a close vicinity of the nanotube surface.Comment: Book Chapter. 50 pages, 11 figures. To be published in "Nanotubes: New Research", edited by F.Columbus (Nova Science, New York, 2005
    • …
    corecore