119 research outputs found
An Edgeworth expansion for finite population L-statistics
In this paper, we consider the one-term Edgeworth expansion for finite
population L-statistics. We provide an explicit formula for the Edgeworth
correction term and give sufficient conditions for the validity of the
expansion which are expressed in terms of the weight function that defines the
statistics and moment conditions.Comment: 14 pages. Minor revisions. Some explanatory comments and a numerical
example were added. Lith. Math. J. (to appear
An improvement of the Berry--Esseen inequality with applications to Poisson and mixed Poisson random sums
By a modification of the method that was applied in (Korolev and Shevtsova,
2009), here the inequalities
and
are proved for the
uniform distance between the standard normal distribution
function and the distribution function of the normalized sum of an
arbitrary number of independent identically distributed random
variables with zero mean, unit variance and finite third absolute moment
. The first of these inequalities sharpens the best known version of
the classical Berry--Esseen inequality since
by virtue of
the condition , and 0.4785 is the best known upper estimate of the
absolute constant in the classical Berry--Esseen inequality. The second
inequality is applied to lowering the upper estimate of the absolute constant
in the analog of the Berry--Esseen inequality for Poisson random sums to 0.3051
which is strictly less than the least possible value of the absolute constant
in the classical Berry--Esseen inequality. As a corollary, the estimates of the
rate of convergence in limit theorems for compound mixed Poisson distributions
are refined.Comment: 33 page
Optimal Uncertainty Quantification
We propose a rigorous framework for Uncertainty Quantification (UQ) in which
the UQ objectives and the assumptions/information set are brought to the
forefront. This framework, which we call \emph{Optimal Uncertainty
Quantification} (OUQ), is based on the observation that, given a set of
assumptions and information about the problem, there exist optimal bounds on
uncertainties: these are obtained as values of well-defined optimization
problems corresponding to extremizing probabilities of failure, or of
deviations, subject to the constraints imposed by the scenarios compatible with
the assumptions and information. In particular, this framework does not
implicitly impose inappropriate assumptions, nor does it repudiate relevant
information. Although OUQ optimization problems are extremely large, we show
that under general conditions they have finite-dimensional reductions. As an
application, we develop \emph{Optimal Concentration Inequalities} (OCI) of
Hoeffding and McDiarmid type. Surprisingly, these results show that
uncertainties in input parameters, which propagate to output uncertainties in
the classical sensitivity analysis paradigm, may fail to do so if the transfer
functions (or probability distributions) are imperfectly known. We show how,
for hierarchical structures, this phenomenon may lead to the non-propagation of
uncertainties or information across scales. In addition, a general algorithmic
framework is developed for OUQ and is tested on the Caltech surrogate model for
hypervelocity impact and on the seismic safety assessment of truss structures,
suggesting the feasibility of the framework for important complex systems. The
introduction of this paper provides both an overview of the paper and a
self-contained mini-tutorial about basic concepts and issues of UQ.Comment: 90 pages. Accepted for publication in SIAM Review (Expository
Research Papers). See SIAM Review for higher quality figure
On the error term in Weyl's law for the Heisenberg manifolds (II)
In this paper we study the mean square of the error term in the Weyl's law of
an irrational -dimensional Heisenberg manifold . An asymptotic formula
is established
Towards Machine Wald
The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with
limited information. Although computers have made possible the numerical
evaluation of sophisticated statistical models, these models are still designed
\emph{by humans} because there is currently no known recipe or algorithm for
dividing the design of a statistical model into a sequence of arithmetic
operations. Indeed enabling computers to \emph{think} as \emph{humans} have the
ability to do when faced with uncertainty is challenging in several major ways:
(1) Finding optimal statistical models remains to be formulated as a well posed
problem when information on the system of interest is incomplete and comes in
the form of a complex combination of sample data, partial knowledge of
constitutive relations and a limited description of the distribution of input
random variables. (2) The space of admissible scenarios along with the space of
relevant information, assumptions, and/or beliefs, tend to be infinite
dimensional, whereas calculus on a computer is necessarily discrete and finite.
With this purpose, this paper explores the foundations of a rigorous framework
for the scientific computation of optimal statistical estimators/models and
reviews their connections with Decision Theory, Machine Learning, Bayesian
Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty
Quantification and Information Based Complexity.Comment: 37 page
Multivariate Normal Approximation on the Wiener Space: New Bounds in the Convex Distance
Copyright © The Author(s) 2021. We establish explicit bounds on the convex distance between the distribution of a vector of smooth functionals of a Gaussian field and that of a normal vector with a positive-definite covariance matrix. Our bounds are commensurate to the ones obtained by Nourdin et al. (Ann Inst Henri Poincaré Probab Stat 46(1):45–58, 2010) for the (smoother) 1-Wasserstein distance, and do not involve any additional logarithmic factor. One of the main tools exploited in our work is a recursive estimate on the convex distance recently obtained by Schulte and Yukich (Electron J Probab 24(130):1–42, 2019). We illustrate our abstract results in two different situations: (i) we prove a quantitative multivariate fourth moment theorem for vectors of multiple Wiener–Itô integrals, and (ii) we characterize the rate of convergence for the finite-dimensional distributions in the functional Breuer–Major theorem.FNR grant APOGee (R-AGR-3585-10) at Luxembourg University; FNR grant FoRGES (R-AGR-3376-10) at Luxembourg University; FNR Grant MISSILe (R-AGR-3410-12-Z) at Luxembourg and Singapore Universities
Confidence bounds for the mean in nonparametric multisample problems
Contains fulltext :
60250.pdf (publisher's version ) (Open Access)23 p
- …