29,981 research outputs found

    Formation of molecules in an expanding Bose-Einstein condensate

    Full text link
    A mean field theory of expanding hybrid atom-molecule Bose-Einstein condensates is applied to the recent MPI experiments on 87{}^{87}Rb that demonstrated the formation of ultracold molecules due to Feshbach resonance. The subsequent dissociation of the molecules is treated using a non-mean-field parametric approximation. The latter method is also used in determining optimal conditions for the formation of molecular BECComment: 5 pages with 5 figure

    Classical Group Field Theory

    Full text link
    The ordinary formalism for classical field theory is applied to dynamical group field theories. Focusing first on a local group field theory over one copy of SU(2) and, then, on more involved nonlocal theories (colored and non colored) defined over a tensor product of the same group, we address the issue of translation and dilatation symmetries and the corresponding Noether theorem. The energy momentum tensor and dilatation current are derived and their properties identified for each case

    Cell motility: a viscous fingering analysis of active gels

    Full text link
    The symmetry breaking of the actin network from radial to longitudinal symmetry has been identified as the major mechanism for keratocytes (fish cells) motility on solid substrate. For strong friction coefficient, the two dimensional actin flow which includes the polymerisation at the edge and depolymerisation in the bulk can be modelled as a Darcy flow, the cell shape and dynamics being then modelled by standard complex analysis methods. We use the theory of active gels to describe the orientational order of the filaments which varies from the border to the bulk. We show analytically that the reorganisation of the cortex is enough to explain the motility of the cell and find the velocity as a function of the orientation order parameter in the bulk.Comment: 15 pages, 4 figures, accepted for publication in EPJ - Plu

    Formation of molecules from a Cs Bose-Einstein condensate

    Full text link
    Conversion of an expanding Bose-Einstein condensate of Cs atoms to a molecular one with an efficiency of more than 30% was observed recently in experiments by M. Mark et al., Europhys. Lett. 69, 706 (2005). The theory presented here describes the experimental results. Values of resonance strength of 8 mG and rate coefficients for atom-molecule deactivation of 1×10−111\times 10^{-11} cm3/^{3}/s and molecule-molecule one of 1.5×10−91.5\times 10^{-9} cm3/^{3}/s are estimated by a fit of the theoretical results to the experimental data. Near the resonance, where the highest conversion efficiency was observed, the results demonstrate strong sensitivity to the magnetic field ripple and inhomogeneity. A conversion efficiency of about 60% is predicted by non-mean-field calculations for the densities and sweep rates lower than the ones used in the experiments.Comment: 9 pages, 10 figure

    Fast and Slow Coherent Cascades in Anti-de Sitter Spacetime

    Full text link
    We study the phase and amplitude dynamics of small perturbations in 3+1 dimensional Anti-de Sitter spacetime using the truncated resonant approximation, also known as the Two Time Framework (TTF). We analyse the phase spectrum for different classes of initial data and find that higher frequency modes turn on with coherently aligned phases. Combining numerical and analytical results, we conjecture that there is a class of initial conditions that collapse in infinite slow time and to which the well-studied case of the two-mode, equal energy initial data belongs. We additionally study perturbations that collapse in finite time, and find that the energy spectrum approaches a power law, with the energy per mode scaling approximately as the inverse first power of the frequency.Comment: 19 pages, multiple figures. v2: version published in CQ

    Radial distribution and strong lensing statistics of satellite galaxies and substructure using high resolution LCDM hydrodynamical simulations

    Full text link
    We analyse the number density and radial distribution of substructures and satellite galaxies using cosmological simulations that follow the gas dynamics of a baryonic component, including shock heating, radiative cooling and star formation within the hierarchical concordance LCDM model. We find that the dissipation of the baryons greatly enhances the survival of subhaloes, expecially in the galaxy core, resulting in a radial distribution of satellite galaxies that closely follows the overall mass distribution in the inner part of the halo. Hydrodynamical simulations are necessary to resolve the adiabatic contraction and dense cores of galaxies, resulting in a total number of satellites a factor of two larger than found in pure dark matter simulation, in good agreement with the observed spatial distribution of satellite galaxies within galaxies and clusters. Convergence tests show that the cored distribution found by previous authors in pure N-body simulations was due to physical overmerging of dark matter only structures. We proceed to use a ray-shooting technique in order to study the impact of these additional substructures on the number of violations of the cusp caustic magnification relation. We develop a new approach to try to disentangle the effect of substructures from the intrinsic discreteness of N-Body simulations. Even with the increased number of substructures in the centres of galaxies, we are not able to reproduce the observed high numbers of discrepancies observed in the flux ratios of multiply lensed quasars.Comment: 11 pages, 15 figures, comparison with previous works updated, one more plot added, minor changes to match the accepted version by MNRA
    • …
    corecore