383 research outputs found
Impedance of a Rectangular Beam Tube with Small Corrugations
We consider the impedance of a structure with rectangular, periodic
corrugations on two opposing sides of a rectangular beam tube. Using the method
of field matching, we find the modes in such a structure. We then limit
ourselves to the the case of small corrugations, but where the depth of
corrugation is not small compared to the period. For such a structure we
generate analytical approximate solutions for the wave number , group
velocity , and loss factor for the lowest (the dominant) mode
which, when compared with the results of the complete numerical solution,
agreed well. We find: if , where is the beam pipe width and is
the beam pipe half-height, then one mode dominates the impedance, with
( is the depth of corrugation),
, and , which (when replacing by
) is the same scaling as was found for small corrugations in a {\it round}
beam pipe. Our results disagree in an important way with a recent paper of
Mostacci {\it et al.} [A. Mostacci {\it et al.}, Phys. Rev. ST-AB, {\bf 5},
044401 (2002)], where, for the rectangular structure, the authors obtained a
synchronous mode with the same frequency , but with .
Finally, we find that if is large compared to then many nearby modes
contribute to the impedance, resulting in a wakefield that Landau damps.Comment: 18 pages, 6 figures, 1 bibliography fil
Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures
We report observation of a strong wakefield induced energy modulation in an
energy-chirped electron bunch passing through a dielectric-lined waveguide.
This modulation can be effectively converted into a spatial modulation forming
micro-bunches with a periodicity of 0.5 - 1 picosecond, hence capable of
driving coherent THz radiation. The experimental results agree well with
theoretical predictions.Comment: v3. Reviewers' suggestions incorporated. Accepted by PR
- …