9,760 research outputs found
Asymptotic Analysis of Generative Semi-Supervised Learning
Semisupervised learning has emerged as a popular framework for improving
modeling accuracy while controlling labeling cost. Based on an extension of
stochastic composite likelihood we quantify the asymptotic accuracy of
generative semi-supervised learning. In doing so, we complement
distribution-free analysis by providing an alternative framework to measure the
value associated with different labeling policies and resolve the fundamental
question of how much data to label and in what manner. We demonstrate our
approach with both simulation studies and real world experiments using naive
Bayes for text classification and MRFs and CRFs for structured prediction in
NLP.Comment: 12 pages, 9 figure
What we don't know about time
String theory has transformed our understanding of geometry, topology and
spacetime. Thus, for this special issue of Foundations of Physics commemorating
"Forty Years of String Theory", it seems appropriate to step back and ask what
we do not understand. As I will discuss, time remains the least understood
concept in physical theory. While we have made significant progress in
understanding space, our understanding of time has not progressed much beyond
the level of a century ago when Einstein introduced the idea of space-time as a
combined entity. Thus, I will raise a series of open questions about time, and
will review some of the progress that has been made as a roadmap for the
future.Comment: 15 pages; Essay for a special issue of Foundations of Physics
commemorating "Forty years of string theory
Negative Energy, Superluminosity and Holography
The holographic connection between large Super Yang Mills theory and
gravity in anti deSitter space requires unfamiliar behavior of the SYM theory
in the limit that the curvature of the AdS geometry becomes small. The
paradoxical behavior includes superluminal oscillations and negative energy
density. These effects typically occur in the SYM description of events which
take place far from the boundary of AdS when the signal from the event arrives
at the boundary. The paradoxes can be resolved by assuming a very rich
collection of hidden degrees of freedom of the SYM theory which store
information but give rise to no local energy density. These degrees of freedom,
called precursors, are needed to make possible sudden apparently acausal energy
momentum flows. Such behavior would be impossible in classical field theory as
a consequence of the positivity of the energy density. However we show that
these effects are not only allowed in quantum field theory but that we can
model them in free quantum field theory.Comment: Expanded version replacing earlier hep-th/990218
Spacetime and the Holographic Renormalization Group
Anti-de Sitter (AdS) space can be foliated by a family of nested surfaces
homeomorphic to the boundary of the space. We propose a holographic
correspondence between theories living on each surface in the foliation and
quantum gravity in the enclosed volume. The flow of observables between our
``interior'' theories is described by a renormalization group equation. The
dependence of these flows on the foliation of space encodes bulk geometry.Comment: 12 page
On the existence of supergravity duals to D1--D5 CFT states
We define a metric operator in the 1/2-BPS sector of the D1-D5 CFT, the
eigenstates of which have a good semi-classical supergravity dual; the
non-eigenstates cannot be mapped to semi-classical gravity duals. We also
analyse how the data defining a CFT state manifests itself in the gravity side,
and show that it is arranged into a set of multipoles. Interestingly, we find
that quantum mechanical interference in the CFT can have observable
manifestations in the semi-classical gravity dual. We also point out that the
multipoles associated to the normal statistical ensemble fluctuate wildly,
indicating that the mixed thermal state should not be associated to a
semi-classical geometry.Comment: 22 pages, 2 figures. v2 : references added, typos correcte
The Library of Babel
We show that heavy pure states of gravity can appear to be mixed states to
almost all probes. Our arguments are made for Schwarzschild black
holes using the field theory dual to string theory in such spacetimes. Our
results follow from applying information theoretic notions to field theory
operators capable of describing very heavy states in gravity. For certain
supersymmetric states of the theory, our account is exact: the microstates are
described in gravity by a spacetime ``foam'', the precise details of which are
invisible to almost all probes.Comment: 7 pages, 1 figure, Essay receiving honorable mention in the 2005
Gravity Research Foundation essay competitio
An Effect of Corrections on Racetrack Inflation
We study the effects of corrections to the K\"ahler potential on
volume stabilisation and racetrack inflation. In a region where classical
supergravity analysis is justified, stringy corrections can nevertheless be
relevant for correctly analyzing moduli stabilisation and the onset of
inflation.Comment: 13 pages, 4 figures. Typos corrected, references added, this version
to appear in JHE
- …
