8 research outputs found

    Pea chloroplast FtsZ can form multimers and correct the thermosensitive defect of an Escherichia coli ftsZ mutant

    No full text
    This paper reports the isolation and characterization of a cDNA encoding the FtsZ protein of pea. The protein is synthesised as a precursor molecule of 423 amino acids with a molecular mass of 44 kDa. When translated in vitro, the protein is translocated efficiently into isolated, intact pea chloroplasts, demonstrating that the protein is localised in the chloroplast. Pea FtsZ synthesised in vitro formed multimers in a calcium-dependent manner. The pea cDNA complemented the thermosensitive defect of an E. coli ftsZ mutant in vivo and converted the filamentous phenotype of the E. coli mutant into the normal wild-type morphology at 42°C. However, pea FtsZ mutants that were defective in multimerisation in vitro failed to correct the phenotype of the E. coli ftsZ mutant in vivo. The pea ftsZ transcripts were abundantly present in the young leaves, but barely detectable in roots and stems and undetectable in older leaves. Light stimulated transcription of the gene significantly in young and dark-grown leaves. This study strongly suggests that the division mechanisms used by chloroplasts and bacteria show considerable similarity

    Mechanism of malarial haem detoxification inhibition by chloroquine.

    No full text
    The haem detoxification pathway of the malaria parasite Plasmodium falciparum is a potential biochemical target for drug development. Free haem, released after haemoglobin degradation, is polymerized by the parasite to form haemozoin pigment. Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2) has been implicated as the catalytic scaffold for detoxification of haem in the malaria parasite. Previously we have shown that a hexapeptide repeat sequence (Ala-His-His-Ala-Ala-Asp), which appears 33 times in Pfhrp-2, may be the major haem binding site in this protein. The haem binding studies carried out by ourselves indicate that up to 18 equivalents of haem could be bound by this protein with an observed K(d) of 0.94 microM. Absorbance spectroscopy provides evidence that chloroquine is capable of extracting haem bound to Pfhrp-2. This was supported by the K(d) value, of 37 nM, observed for the haem-chloroquine complex. The native PAGE studies reveal that the formation of the haem-Pfhrp-2 complex is disrupted by chloroquine. These results indicate that chloroquine may be acting by inhibiting haem detoxification/binding to Pfhrp-2. Moreover, the higher affinity of chloroquine for haem than Pfhrp-2 suggests a possible mechanism of action for chloroquine; it may remove the haem bound to Pfhrp-2 and form a complex that is toxic to the parasite

    Hemozoin formation in malaria: a two-step process involving histidine-rich proteins and lipids

    No full text
    Major blood stage antimalarial drugs like chloroquine and artemisinin target the heme detoxification process of the malaria parasite. Hemozoin formation reactions in vitro using the Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2), lipids, and auto-catalysis are slow and could not explain the speed of detoxification needed for parasite survival. Here, we show that malarial hemozoin formation is a coordinated two component process involving both lipids and histidine-rich proteins. Hemozoin formation efficiency in vitro is 1-2% with Pfhrp-2 and 0.25-0.5% with lipids. We added lipids after 9h in a 12h Pfhrp-2 mediated reaction that resulted in sixfold increase in hemozoin formation. However, a lipid mediated reaction in which Pfhrp-2 was added after 9h produced only twofold increase in hemozoin production compared to the reaction with Pfhrp-2 alone. Synthetic peptides corresponding to the Pfhrp-2 heme binding sequences, based on repeats of AHHAAD, neither alone nor in combination with lipids were able to generate hemozoin in vitro. These results indicate that hemozoin formation in malaria parasite involves both the lipids and the scaffolding proteins. Histidine-rich proteins might facilitate hemozoin formation by binding with a large number of heme molecules, and facilitating the dimer formation involving iron-carboxylate bond between two heme molecules, and lipids may then subsequently assist the mechanism of long chain formation, held together by hydrogen bonds or through extensive networking of hydrogen bonds
    corecore