25,365 research outputs found
Rapidly Rotating Fermi Gases
We show that the density profile of a Fermi gas in rapidly rotating potential
will develop prominent features reflecting the underlying Landau level like
energy spectrum. Depending on the aspect ratio of the trap, these features can
be a sequence of ellipsoidal volumes or a sequence of quantized steps.Comment: 4 pages, 1 postscript fil
Algebraic Model for scattering of three-s-cluster systems. II. Resonances in the three-cluster continuum of 6He and 6Be
The resonance states embedded in the three-cluster continuum of 6He and 6Be
are obtained in the Algebraic Version of the Resonating Group Method. The model
accounts for a correct treatment of the Pauli principle. It also provides the
correct three-cluster continuum boundary conditions by using a Hyperspherical
Harmonics basis. The model reproduces the observed resonances well and achieves
good agreement with other models. A better understanding for the process of
formation and decay of the resonance states in six-nucleon systems is obtained.Comment: 8 pages, 10 postscript figures, submitted to Phys. Rev.
Low temperature specific heat of the heavy fermion superconductor PrOsSb
We report the magnetic field dependence of the low temperature specific heat
of single crystals of the first Pr-based heavy fermion superconductor
PrOsSb. The low temperature specific heat and the magnetic phase
diagram inferred from specific heat, resistivity and magnetisation provide
compelling evidence of a doublet ground state and hence superconductivity
mediated by quadrupolar fluctuations. This establishes PrOsSb as a
very strong contender of superconductive pairing that is neither
electron-phonon nor magnetically mediated.Comment: 4 pages, 4 figure
Local Spin-Gauge Symmetry of the Bose-Einstein Condensates in Atomic Gases
The Bose-Einstein condensates of alkali atomic gases are spinor fields with
local ``spin-gauge" symmetry. This symmetry is manifested by a superfluid
velocity (or gauge field) generated by the Berry phase of the
spin field. In ``static" traps, splits the degeneracy of the
harmonic energy levels, breaks the inversion symmetry of the vortex nucleation
frequency , and can lead to {\em vortex ground states}. The
inversion symmetry of , however, is not broken in ``dynamic"
traps. Rotations of the atom cloud can be generated by adiabatic effects
without physically rotating the entire trap.Comment: Typos in the previous version corrected, thanks to the careful
reading of Daniel L. Cox. 13 pages + 2 Figures in uuencode + gzip for
On the quantisation of the angular momentum
When a hydrogen-like atom is treated as a two dimensional system whose
configuration space is multiply connected, then in order to obtain the same
energy spectrum as in the Bohr model the angular momentum must be
half-integral.Comment: Latex, 5 page
Quantum metastability in a class of moving potentials
In this paper we consider quantum metastability in a class of moving
potentials introduced by Berry and Klein. Potential in this class has its
height and width scaled in a specific way so that it can be transformed into a
stationary one. In deriving the non-decay probability of the system, we argue
that the appropriate technique to use is the less known method of scattering
states. This method is illustrated through two examples, namely, a moving
delta-potential and a moving barrier potential. For expanding potentials, one
finds that a small but finite non-decay probability persists at large times.
Generalization to scaling potentials of arbitrary shape is briefly indicated.Comment: 10 pages, 1 figure
- …
