76 research outputs found

    A Carbon Corrosion Model to Evaluate the Effect of Steady State and Transient Operation of a Polymer Electrolyte Membrane Fuel Cell

    Full text link
    A carbon corrosion model is developed based on the formation of surface oxides on carbon and platinum of the polymer electrolyte membrane fuel cell electrode. The model predicts the rate of carbon corrosion under potential hold and potential cycling conditions. The model includes the interaction of carbon surface oxides with transient species like OH radicals to explain observed carbon corrosion trends under normal PEM fuel cell operating conditions. The model prediction agrees qualitatively with the experimental data supporting the hypothesis that the interplay of surface oxide formation on carbon and platinum is the primary driver of carbon corrosion

    Injection of photoelectrons into dense argon gas

    Full text link
    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.Comment: 18 pages, 10 figures, figure nr. 10 has been redrawn, to be submitted to Plasma Sources Science and Technolog

    Current-induced magnetic superstructures in exchange-spring devices

    Get PDF
    We investigate the potential to use a magneto-thermo-electric instability that may be induced in a mesoscopic magnetic multi-layer (F/f/F) to create and control magnetic superstructures. In the studied multilayer two strongly ferromagnetic layers (F) are coupled through a weakly ferromagnetic spacer (f) by an "exchange spring" with a temperature dependent "spring constant" that can be varied by Joule heating caused by an electrical dc current. We show that in the current-in-plane (CIP) configuration a distribution of the magnetization, which is homogeneous in the direction of the current flow, is unstable in the presence of an external magnetic field if the length L of the sample in this direction exceeds some critical value Lc ~ 10 \mu m. This spatial instability results in the spontaneous formation of a moving domain of magnetization directions, the length of which can be controlled by the bias voltage in the limit L >> Lc. Furthermore, we show that in such a situation the current-voltage characteristics has a plateau with hysteresis loops at its ends and demonstrate that if biased in the plateau region the studied device functions as an exponentially precise current stabilizer.Comment: 8 pages, 6 figure
    corecore