927 research outputs found

    A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing

    Get PDF
    Acid-sensitive K+ channels of the tandem P-domain K+-channel family (TASK-1 and TASK-3) have been implicated in peripheral and central respiratory chemosensitivity; however, because of the lack of decisive pharmacological agents, the final proof of the role of the TASK channel in the chemosensory control of breathing has been missing. In the mouse, TASK-1 and TASK-3 channels are dispensable for central respiratory chemosensitivity (Mulkey et al., 2007Go). Here, we have used knock-out animals to determine whether TASK-1 and TASK-3 channels play a role in the carotid body function and chemosensory control of breathing exerted by the carotid body chemoreceptors. Ventilatory responses to hypoxia (10% O2 in inspired air) and moderate normoxic hypercapnia (3–6% CO2 in inspired air) were significantly reduced in TASK-1 knock-out mice. In contrast, TASK-3-deficient mice showed responses to both stimuli that were similar to those developed by their wild-type counterparts. TASK-1 channel deficiency resulted in a marked reduction of the hypoxia (by 49%)- and CO2 (by 68%)-evoked increases in the carotid sinus nerve chemoafferent discharge recorded in the in vitro superfused carotid body/carotid sinus nerve preparations. Deficiency in both TASK-1 and TASK-3 channels increased baseline chemoafferent activity but did not cause a further reduction of the carotid body chemosensory responses. These observations provide direct evidence that TASK-1 channels contribute significantly to the increases in the carotid body chemoafferent discharge in response to a decrease in arterial PO2 or an increase in PCO2/[H+]. TASK-1 channels therefore play a key role in the control of ventilation by peripheral chemoreceptors

    The core shift effect in the blazar 3C 454.3

    Full text link
    Opacity-driven shifts of the apparent VLBI core position with frequency (the "core shift" effect) probe physical conditions in the innermost parts of jets in active galactic nuclei. We present the first detailed investigation of this effect in the brightest gamma-ray blazar 3C454.3 using direct measurements from simultaneous 4.6-43 GHz VLBA observations, and a time lag analysis of 4.8-37 GHz lightcurves from the UMRAO, CrAO, and Metsahovi observations in 2007-2009. The results support the standard Konigl model of jet physics in the VLBI core region. The distance of the core from the jet origin r_c(nu), the core size W(nu), and the lightcurve time lag DT(nu) all depend on the observing frequency nu as r_c(nu)~W(nu)~ DT(nu)~nu^-1/k. The obtained range of k=0.6-0.8 is consistent with the synchrotron self-absorption being the dominating opacity mechanism in the jet. The similar frequency dependence of r_c(nu) and W(nu) suggests that the external pressure gradient does not dictate the jet geometry in the cm-band core region. Assuming equipartition, the magnetic field strength scales with distance r as B = 0.4(r/1pc)^-0.8 G. The total kinetic power of electron/positron jet is about 10^44 ergs/s.Comment: Accepted for publication in MNRAS; 10 pages, 6 figure

    Full-Stokes polarimetry with circularly polarized feeds - Sources with stable linear and circular polarization in the GHz regime

    Get PDF
    We present a pipeline that allows recovering reliable information for all four Stokes parameters with high accuracy. Its novelty relies on the treatment of the instrumental effects already prior to the computation of the Stokes parameters contrary to conventional methods, such as the M\"uller matrix one. The instrumental linear polarization is corrected across the whole telescope beam and significant Stokes QQ and UU can be recovered even when the recorded signals are severely corrupted. The accuracy we reach in terms of polarization degree is of the order of 0.1-0.2 %. The polarization angles are determined with an accuracy of almost 1∘^{\circ}. The presented methodology was applied to recover the linear and circular polarization of around 150 Active Galactic Nuclei. The sources were monitored from July 2010 to April 2016 with the Effelsberg 100-m telescope at 4.85 GHz and 8.35 GHz with a cadence of around 1.2 months. The polarized emission of the Moon was used to calibrate the polarization angle. Our analysis showed a small system-induced rotation of about 1∘^{\circ} at both observing frequencies. Finally, we identify five sources with significant and stable linear polarization; three sources remain constantly linearly unpolarized over the period we examined; a total of 11 sources have stable circular polarization degree mcm_\mathrm{c} and four of them with non-zero mcm_\mathrm{c}. We also identify eight sources that maintain a stable polarization angle over the examined period. All this is provided to the community for polarization observations reference. We finally show that our analysis method is conceptually different from the traditionally used ones and performs better than the M\"uller matrix method. Although it was developed for a system equipped with circularly polarized feeds it can easily be modified for systems with linearly polarized feeds as well.Comment: 19 pages, 17 figures, accepted for publication in Astronomy & Astrophysics on May 30, 201

    Long term biochar effects on corn yield, soil quality and profitability in the US Midwest

    Get PDF
    Corn production in the US Midwest has the potential to generate a large amount of crop residue for bioenergy production. However, unconstrained harvesting of crop residues is associated with a long-term decline in soil quality. Biochar applications can mitigate many of the negative effects of residue removal but data and economic analyses to support decision making are lacking. To explore sustainable and profitable practices for residue harvesting in central Iowa we used 11 years of soil, crop yield, and management data to calibrate the Agricultural Production Systems sIMulator (APSIM) biochar model. We then used the model to evaluate how different biochar types and application rates impact productivity and environmental performance of conventional corn and corn-soybean cropping systems in Iowa under different N fertilizer application rates and residue harvesting scenarios. A cost-benefit analysis was also employed to identify the economically optimal biochar application rate from both producer and societal perspectives. Modeling results showed for both continuous corn and corn-soybean rotations that as biochar application rate increased (from 0 to 90 Mg ha-1) nitrate leaching decreased (from 2.5 to 20 %) and soil carbon levels increased (from 8 to 115 %), but there was only a small impact on corn yields (from –2.6 to 0.6 %). The cost-benefit analysis revealed that public benefits, evaluated from decreased nitrate leaching and increased soil carbon levels, significantly outweighed the private revenue accrued from crop yield gains, and that a biochar application rate of 22 Mg ha-1 was more cost-effective (per ton) compared to higher biochar rates. Overall, this study found that applying biochar once at a rate of 22 Mg ha-1 allows for the sustainable annual removal of 50% of corn residue for 32 years, is profitable for farmers even with minimal impact on grain yield, and beneficial to society through reduced nitrate leaching and increased soil organic carbon levels

    A VLBA survey of the core shift effect in AGN jets I. Evidence for dominating synchrotron opacity

    Full text link
    The effect of a frequency dependent shift of the VLBI core position (known as the "core shift") was predicted more than three decades ago and has since been observed in a few sources, but often within a narrow frequency range. This effect has important astrophysical and astrometric applications. To achieve a broader understanding of the core shift effect and the physics behind it, we conducted a dedicated survey with NRAO's Very Long Baseline Array (VLBA). We used the VLBA to image 20 pre-selected sources simultaneously at nine frequencies in the 1.4-15.4 GHz range. The core position at each frequency was measured by referencing it to a bright, optically thin feature in the jet. A significant core shift has been successfully measured in each of the twenty sources observed. The median value of the core shift is found to be 1.21 mas if measured between 1.4 and 15.4 GHz, and 0.24 mas between 5.0 and 15.4 GHz. The core position, r, as a function of frequency, n, is found to be consistent with an r n^-1 law. This behavior is predicted by the Blandford & Koenigl model of a purely synchrotron self-absorbed conical jet in equipartition. No systematic deviation from unity of the power law index in the r(n) relation has been convincingly detected. We conclude that neither free-free absorption nor gradients in pressure and/or density in the jet itself and in the ambient medium surrounding the jet play a significant role in the sources observed within the 1.4-15.4 GHz frequency range. These results support the interpretation of the parsec-scale core as a continuous Blandford-Koenigl type jet with smooth gradients of physical properties along it.Comment: 31 pages, 6 figures, 5 tables; accepted to Astronomy & Astrophysic

    A search for linear polarization in the active galactic nucleus 3C 84 at 239 and 348 GHz

    Full text link
    We report a search for linear polarization in the active galactic nucleus (AGN) 3C 84 (NGC 1275) at observed frequencies of 239 GHz and 348 GHz, corresponding to rest-frame frequencies of 243 GHz and 354 GHz. We collected polarization data with the IRAM Plateau de Bure Interferometer via Earth rotation polarimetry. We do not detect linear polarization. Our analysis finds 3-sigma upper limits on the degree of polarization of 0.5% and 1.9% at 239 GHz and 348 GHz, respectively. We regard the influence of Faraday conversion as marginal, leading to expected circular polarizations <0.3%. Assuming depolarization by a local Faraday screen, we constrain the rotation measure, as well as the fluctuations therein, to be 10^6 rad/m^2. From this we estimate line-of-sight magnetic field strengths of >100 microG. Given the physical dimensions of 3C 84 and its observed structure, the Faraday screen appears to show prominent small-scale structure, with \DeltaRM > 10^6 rad/m^2 on projected spatial scales <1 pc.Comment: 7 pages, 4 figures. Accepted by MNRA

    SBS 1150+599A: an extremely oxygen-poor planetary nebula in the Galactic halo?

    Get PDF
    We report results of a spectrophotometric study of SBS 1150+599A and discuss the nature of this object based upon our data. Our study shows that SBS 1150+599A is most probably a planetary nebula located in the Galactic halo and not a cataclysmic variable as originally proposed by the authors of the Second Byurakan Survey from low resolution spectroscopy. We have further elaborated on the properties of SBS 1150+599A (now becoming PN G135.9+55.9) with tools used for planetary nebula analysis. Our photoionization models show that, in order to match the observational constraints, the oxygen abundance in the nebula is probably extremely low, around 1/500 solar, which is one order of magnitude lower than the most oxygen-poor planetary nebulae known so far. This finding has strong implications on our understanding of the formation of planetary nebulae and of the evolution of the Galactic halo.Comment: 13 pages, 5 figures, accepted for publication in Astronomy and Astrophysic
    • …
    corecore