142 research outputs found

    Autonomous models solvable through the full interval method

    Full text link
    The most general exclusion single species one dimensional reaction-diffusion models with nearest-neighbor interactions which are both autonomous and can be solved exactly through full interval method are introduced. Using a generating function method, the general solution for, FnF_n, the probability that nn consecutive sites be full, is obtained. Some other correlation functions of number operators at nonadjacent sites are also explicitly obtained. It is shown that for a special choice of initial conditions some correlation functions of number operators called full intervals remain uncorrelated

    h-deformation of Gr(2)

    Full text link
    The hh-deformation of functions on the Grassmann matrix group Gr(2)Gr(2) is presented via a contraction of Grq(2)Gr_q(2). As an interesting point, we have seen that, in the case of the hh-deformation, both R-matrices of GLh(2)GL_h(2) and Grh(2)Gr_h(2) are the same

    Phase transition in an asymmetric generalization of the zero-temperature Glauber model

    Full text link
    An asymmetric generalization of the zero-temperature Glauber model on a lattice is introduced. The dynamics of the particle-density and specially the large-time behavior of the system is studied. It is shown that the system exhibits two kinds of phase transition, a static one and a dynamic one.Comment: LaTeX, 9 pages, to appear in Phys. Rev. E (2001

    On a "New" Deformation of GL(2)

    Full text link
    We refute a recent claim in the literature of a "new" quantum deformation of GL(2).Comment: 4 pages, LATE

    Connection between matrix-product states and superposition of Bernoulli shock measures

    Full text link
    We consider a generalized coagulation-decoagulation system on a one-dimensional discrete lattice with reflecting boundaries. It is known that a Bernoulli shock measure with two shock fronts might have a simple random-walk dynamics, provided that some constraints on the microscopic reaction rates of this system are fulfilled. Under these constraints the steady-state of the system can be written as a linear superposition of such shock measures. We show that the coefficients of this expansion can be calculated using the finite-dimensional representation of the quadratic algebra of the system obtained from a matrix-product approach.Comment: 5 page

    Autonomous multispecies reaction-diffusion systems with more-than-two-site interactions

    Full text link
    Autonomous multispecies systems with more-than-two-neighbor interactions are studied. Conditions necessary and sufficient for closedness of the evolution equations of the nn-point functions are obtained. The average number of the particles at each site for one species and three-site interactions, and its generalization to the more-than-three-site interactions is explicitly obtained. Generalizations of the Glauber model in different directions, using generalized rates, generalized number of states at each site, and generalized number of interacting sites, are also investigated.Comment: 9 pages, LaTeX2

    Exactly solvable models through the empty interval method

    Full text link
    The most general one dimensional reaction-diffusion model with nearest-neighbor interactions, which is exactly-solvable through the empty interval method, has been introduced. Assuming translationally-invariant initial conditions, the probability that nn consecutive sites are empty (EnE_n), has been exactly obtained. In the thermodynamic limit, the large-time behavior of the system has also been investigated. Releasing the translational invariance of the initial conditions, the evolution equation for the probability that nn consecutive sites, starting from the site kk, are empty (Ek,nE_{k,n}) is obtained. In the thermodynamic limit, the large time behavior of the system is also considered. Finally, the continuum limit of the model is considered, and the empty-interval probability function is obtained.Comment: 12 pages, LaTeX2

    The Fokker-Planck equation, and stationary densities

    Full text link
    The most general local Markovian stochastic model is investigated, for which it is known that the evolution equation is the Fokker-Planck equation. Special cases are investigated where uncorrelated initial states remain uncorrelated. Finally, stochastic one-dimensional fields with local interactions are studied that have kink-solutions.Comment: 10 page

    Revised spherically symmetric solutions of R+ε/RR+\varepsilon/R gravity

    Full text link
    We study spherically symmetric static empty space solutions in R+ε/RR+\varepsilon/R model of f(R)f(R) gravity. We show that the Schwarzschild metric is an exact solution of the resulted field equations and consequently there are general solutions which {are perturbed Schwarzschild metric and viable for solar system. Our results for large scale contains a logarithmic term with a coefficient producing a repulsive gravity force which is in agreement with the positive acceleration of the universe.Comment: 8 page

    Phase transition in an asymmetric generalization of the zero-temperature q-state Potts model

    Full text link
    An asymmetric generalization of the zero-temperature q-state Potts model on a one dimensional lattice, with and without boundaries, has been studied. The dynamics of the particle number, and specially the large time behavior of the system has been analyzed. In the thermodynamic limit, the system exhibits two kinds of phase transitions, a static and a dynamic phase transition.Comment: 11 pages, LaTeX2
    corecore