16 research outputs found

    Fenton and Photo-Fenton Nanocatalysts Revisited from the Perspective of Life Cycle Assessment

    Get PDF
    This study provides an overview of the environmental impacts associated with the production of different magnetic nanoparticles (NPs) based on magnetite (Fe3O4), with a potential use as heterogeneous Fenton or photo-Fenton catalysts in wastewater treatment applications. The tendency of Fe3O4 NPs to form aggregates in water makes necessary their decoration with stabilizing agents, in order to increase their catalytic activity. Different stabilizing agents were considered in this study: poly(acrylic acid) (PAA), polyethylenimine (PEI) and silica (SiO2), as well as the immobilization of the magnetite-based catalysts in a mesoporous silica matrix, SBA-15. In the case of photo-Fenton catalysts, combinations of magnetite NPs with semiconductors were evaluated, so that magnetic recovery of the nanomaterials is possible, thus allowing a safe discharge free of NPs. The results of this study suggest that magnetic nanoparticles coated with PEI or PAA were the most suitable option for their applications in heterogeneous Fenton processes, while ZnO-Fe3O4 NPs provided an interesting approach in photo-Fenton. This work showed the importance of identifying the relevance of nanoparticle production strategy in the environmental impacts associated with their useThis research was supported by two projects granted by Spanish Ministry of Science and Innovation: MODENA Project CTQ2016-79461-R and CLUSTERCAT Project MAT2015-67458-P, and Fundación Ramón Areces, Spain (Project CIVP18A3940). The authors belong to the Galician Competitive Research Groups ED431C-2017/22 and ED431C-2017/29 and CRETUS InstituteS

    Development of a novel magnetic reactor based on nanostructured Fe3O4@PAA as heterogenous Fenton catalyst

    Get PDF
    With the recent development of nanotechnology, magnetic nanoparticles (mNPs) have received increasing attention as potential heterogeneous Fenton catalysts in wastewater treatment applications, as an alternative to the conventional Fenton process using dissolved iron salts. Due to their superparamagnetic properties, Fe3O4 mNPs can be easily recovered and reused by applying a magnetic field. However, Fe3O4 mNPs have a marked tendency to form aggregates in water, leading to a decrease in their catalytic yield. To overcome these limitations, this work explores the catalytic activity of Fe3O4 coated with poly(acrylic acid) (Fe3O4@PAA) as stabilized Fenton heterogeneous nanocatalyst, in the degradation of C.I. Reactive Blue 19 (RB19). To maximize the catalytic potential of Fe3O4@PAA, an experimental design based on the Response Surface Methodology (RSM) has been developed to optimize the conditions of the Fenton process in terms of Fe3O4@PAA concentration (100–300 mg L−1) and H2O2 dose (100–400 mg L−1). Based on the results obtained, a novel sequential batch reactor (SBR) coupled to an external magnetic separation system has been developed, guaranteeing the complete retention of the mNPs in the system. This system allows the reuse of Fe3O4@PAA for at least 10 consecutive cycles, with a successful decolorization of RB19 after 4 h of treatmentThis research was supported by two projects granted by Spanish Ministry of Science and Innovation: MODENA Project CTQ2016-79461-R and CLUSTERCAT Project MAT2015-67458-P, and Fundación Ramon Areces, Spain (Project CIVP18A3940). The authors belong to the Galician Competitive Research Groups ED431C-2017/22 and ED431C-2017/29, programme co-funded by FEDER, CRETUS Strategic Partnership (AGRUP2015/02) and AEMAT (ED431E 2018/08)S

    Reusable Fe₃O₄/SBA15 nanocomposite as an efficient photo-Fenton catalyst for the removal of sulfamethoxazole and Orange II

    Get PDF
    Today, the presence of recalcitrant pollutants in wastewater, such as pharmaceuticals or other organic compounds, is one of the main obstacles to the widespread implementation of water reuse. In this context, the development of innovative processes for their removal becomes necessary to guarantee effluent quality. This work presents the potentiality of magnetic nanoparticles immobilized on SBA-15 mesoporous silica as Fenton and photo-Fenton catalysts under visible light irradiation. The influence of the characteristics of the compounds and nanoparticles on the removal yield was investigated. Once the key aspects of the reaction mechanism were analyzed, to evaluate the feasibility of this process, an azo dye (Orange II) and an antibiotic (sulfamethoxazole) were selected as main target compounds. The concentration of Orange II decreased below the detection limit after two hours of reaction, with mineralization values of 60%. In addition, repeated sequential experiments revealed the recoverability and stability of the nanoparticles in a small-scale reactor. The benchmarking of the obtained results showed a significant improvement of the process using visible light in terms of kinetic performance, comparing the results to the Fenton process conducted at dark. Reusability, yield and easy separation of the catalyst are its main advantages for the industrial application of this processThis research was supported by two projects granted by Spanish Ministry of Science, Innovation and Universities: HP-NANOBIO Project, grant number PID2019-111163RB-I00; CLUSTERCAT Project, grant number MAT2015-67458-P; and Fundación Ramón Areces (Spain), grant number CIVP18A3940.S

    Caracterización y regulación del factor liberador de la hormona de crecimiento en neuronas de cerebro de rata

    Full text link
    Tesis doctoral inédita leida en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Fisiología. Fecha de lectura: 27 de Febrero de 1992

    Enhanced Photocatalytic Activity of Semiconductor Nanocomposites Doped with Ag Nanoclusters Under UV and Visible Light

    Get PDF
    Emerging contaminants (ECs) represent a wide range of compounds, whose complete elimination from wastewaters by conventional methods is not always guaranteed, posing human and environmental risks. Advanced oxidation processes (AOPs), based on the generation of highly oxidizing species, lead to the degradation of these ECs. In this context, TiO2 and ZnO are the most widely used inorganic photocatalysts, mainly due to their low cost and wide availability. The addition of small amounts of nanoclusters may imply enhanced light absorption and an attenuation effect on the recombination rate of electron/hole pairs, resulting in improved photocatalytic activity. In this work, we propose the use of silver nanoclusters deposited on ZnO nanoparticles (ZnO–Ag), with a view to evaluating their catalytic activity under both ultraviolet A (UVA) and visible light, in order to reduce energetic requirements in prospective applications on a larger scale. The catalysts were produced and then characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and inductively coupled plasma-optical emission spectrometry (ICP-OES). As proof of concept of the capacity of photocatalysts doped with nanoclusters, experiments were carried out to remove the azo dye Orange II (OII). The results demonstrated the high photocatalytic efficiency achieved thanks to the incorporation of nanoclusters, especially evident in the experiments performed under white lightThis research was supported by two projects granted by Spanish Ministry of Science, Innovation and Universities: MODENA Project CTQ2016-79461-R and CLUSTERCAT Project MAT2015-67458-P, and Fundación Ramón Areces, Spain (Project CIVP18A3940)S

    Melatonin improves BAT mass and function

    No full text
    Fernández-Vázquez, G. (1) Reiter, Russell J. (2) Agil, A. (3)Melatonin limits obesity in rodents without affecting food intake and activity, suggesting a thermogenic effect. Previously we demonstrated that melatonin browns subcutaneous fat in Zücker diabetic fatty (ZDF) rats. Other works pointed to melatonin as a signal that increases brown adipose tissue (BAT) mass and function in rodents. However, direct proof of thermogenic properties (uncoupled mitochondria) of the newly recruited BAT in response to melatonin is still lacking. Therefore, in this work, we investigated if melatonin recruits thermogenic BAT in ZDF rats. Zücker lean (ZL) and ZDF animals were subdivided into two groups, control (C) and treated with oral melatonin (M) for 6 weeks. Mitochondrial mass, activity of citrate synthase (CS), and respiratory chain complexes I and IV were lower in C-ZDF than in C-ZL animals (P < .001). Melatonin treatment increased BAT weight in ZDF rats (P < .001). Also, it rose mitochondrial mass (P < .01) and activities of CS and complexes I and IV (P < .001) in both, ZDF and ZL rats. Uncoupling protein 1 (UCP1) mRNA and protein were 50% lower in BAT from obese rats. Also, guanosine diphosphate (GDP) binding was lower in ZDF than in lean rats (P < .01). Melatonin treatment of obese rats restored the expression of UCP1 and GDP binding to levels of lean rats and sensitized the thermogenic response to cold exposure. These data demonstrated that melatonin recruits thermogenic BAT in ZDF rats. This may contribute to melatonin's control of body weight and its metabolic benefits.Departamento de Farmacología, UGR.Instituto Universitario de Investigación de Neurociencias "Federico Olóriz"Grupo de Investigación CTS-109

    Fenton and Photo-Fenton Nanocatalysts Revisited from the Perspective of Life Cycle Assessment

    No full text
    This study provides an overview of the environmental impacts associated with the production of different magnetic nanoparticles (NPs) based on magnetite (Fe3O4), with a potential use as heterogeneous Fenton or photo-Fenton catalysts in wastewater treatment applications. The tendency of Fe3O4 NPs to form aggregates in water makes necessary their decoration with stabilizing agents, in order to increase their catalytic activity. Different stabilizing agents were considered in this study: poly(acrylic acid) (PAA), polyethylenimine (PEI) and silica (SiO2), as well as the immobilization of the magnetite-based catalysts in a mesoporous silica matrix, SBA-15. In the case of photo-Fenton catalysts, combinations of magnetite NPs with semiconductors were evaluated, so that magnetic recovery of the nanomaterials is possible, thus allowing a safe discharge free of NPs. The results of this study suggest that magnetic nanoparticles coated with PEI or PAA were the most suitable option for their applications in heterogeneous Fenton processes, while ZnO-Fe3O4 NPs provided an interesting approach in photo-Fenton. This work showed the importance of identifying the relevance of nanoparticle production strategy in the environmental impacts associated with their use

    Gonadotropin-releasing hormone receptor gene expression during pubertal development of male rats

    No full text
    This work was supported by grants PM95-212 from the Ministerio de Educación y Ciencia and 99/0412 from the Fondo de Investigación Sanitaria (to G.F.V.) and by a predoctoral fellowship from the Instituto de Salud Carlos III (to H.Z.C.)Appropriate expression of the GnRH receptor (GnRH-R) in gonadotropes is critical for GnRH signaling and hence for gonadotropin secretion and sexual development. In the present work, we have studied the ontogeny of the steady-state GnRH-R mRNA levels in pituitaries of male rats from Day 5 to Day 55, when sexual maturity is attained. Developmental changes of gonadotropin subunit (α, FSHβ, and LHβ) mRNA levels were also assessed. In addition, the role of the endogenous GnRH on the maturational changes of GnRH-R and gonadotropin subunit gene expression was investigated. Messenger RNA levels were determined by Northern blot analysis of total RNA from anterior pituitaries. Amounts of the most abundant (5.0 kb) GnRH-R mRNA increased slowly from Day 5 through the infantile and the juvenile periods, to peak at Day 35 (12-fold increase vs. Day 5). Thereafter, the levels of the GnRH-R mRNA decline slightly until Day 55 (33% decrease vs. Day 35). Parallel changes were observed on the 4.5-kb transcript of the GnRH-R gene. Alpha subunit mRNA was easily detected at Day 5, and its levels increased progressively through the infantile period (2.5-fold increase) and peaked at Day 25 (3.3-fold increase vs. Day 5) with a smooth nonstatistically significant increment until Day 35; then it decreased by 41.5% at Day 55. FSHβ and LHβ mRNA levels rose slowly until Day 25. A sharp rise occurred thereafter to reach maximum levels at Day 35 (5.8-fold for FSHβ and 3.8-fold for LHβ vs. Day 25). Thereafter, the levels of both mRNAs fell until Day 55 (44.1% decrease for FSHβ and 37.1% decrease for LHβ vs. Day 35). To ascertain whether developmental activation of the GnRH-R and gonadotropin subunit gene expression is GnRH dependent, we have studied the effect of blocking the endogenous GnRH action by treating developing male rats with the specific GnRH antagonist cetrorelix (1.5 mg/kg body weight/week, s.c.) through the infantile (Days 5–20) and the juvenile periods (Days 20–35). Cetrorelix completely blocked the rise of levels of the two most abundant species, 5.0 kb and 4.5 kb, of the GnRH-R mRNA, during both the infantile and the juvenile periods. Cetrorelix also abolished the developmental rise of the gonadotropin β subunit mRNAs during the two periods of the study. In contrast, the α subunit gene expression was not altered by cetrorelix treatment during any of the two periods. These data demonstrate that sexual maturation of male rats is accompanied by a progressive and concerted induction of GnRH-R and gonadotropin subunit gene expression. Developmental activation of GnRH-R and gonadotropin β subunit genes is GnRH dependent. The apparent GnRH-independent regulation of the α-glycoprotein subunit mRNA levels may be due to the contribution of thyrotropes and perhaps to the presence of exclusive regulatory signals for this gene.Depto. de Genética, Fisiología y MicrobiologíaFac. de Ciencias BiológicasTRUEpu

    Development of a Novel Magnetic Reactor Based on Nanostructured Fe3O4@PAA as Heterogenous Fenton Catalyst

    No full text
    With the recent development of nanotechnology, magnetic nanoparticles (mNPs) have received increasing attention as potential heterogeneous Fenton catalysts in wastewater treatment applications, as an alternative to the conventional Fenton process using dissolved iron salts. Due to their superparamagnetic properties, Fe3O4 mNPs can be easily recovered and reused by applying a magnetic field. However, Fe3O4 mNPs have a marked tendency to form aggregates in water, leading to a decrease in their catalytic yield. To overcome these limitations, this work explores the catalytic activity of Fe3O4 coated with poly(acrylic acid) (Fe3O4@PAA) as stabilized Fenton heterogeneous nanocatalyst, in the degradation of C.I. Reactive Blue 19 (RB19). To maximize the catalytic potential of Fe3O4@PAA, an experimental design based on the Response Surface Methodology (RSM) has been developed to optimize the conditions of the Fenton process in terms of Fe3O4@PAA concentration (100&ndash;300 mg L&minus;1) and H2O2 dose (100&ndash;400 mg L&minus;1). Based on the results obtained, a novel sequential batch reactor (SBR) coupled to an external magnetic separation system has been developed, guaranteeing the complete retention of the mNPs in the system. This system allows the reuse of Fe3O4@PAA for at least 10 consecutive cycles, with a successful decolorization of RB19 after 4 h of treatment

    Enhanced Photocatalytic Activity of Semiconductor Nanocomposites Doped with Ag Nanoclusters Under UV and Visible Light

    No full text
    Emerging contaminants (ECs) represent a wide range of compounds, whose complete elimination from wastewaters by conventional methods is not always guaranteed, posing human and environmental risks. Advanced oxidation processes (AOPs), based on the generation of highly oxidizing species, lead to the degradation of these ECs. In this context, TiO2 and ZnO are the most widely used inorganic photocatalysts, mainly due to their low cost and wide availability. The addition of small amounts of nanoclusters may imply enhanced light absorption and an attenuation effect on the recombination rate of electron/hole pairs, resulting in improved photocatalytic activity. In this work, we propose the use of silver nanoclusters deposited on ZnO nanoparticles (ZnO&ndash;Ag), with a view to evaluating their catalytic activity under both ultraviolet A (UVA) and visible light, in order to reduce energetic requirements in prospective applications on a larger scale. The catalysts were produced and then characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and inductively coupled plasma-optical emission spectrometry (ICP-OES). As proof of concept of the capacity of photocatalysts doped with nanoclusters, experiments were carried out to remove the azo dye Orange II (OII). The results demonstrated the high photocatalytic efficiency achieved thanks to the incorporation of nanoclusters, especially evident in the experiments performed under white light
    corecore